Klabin Celulose S.A.

Monitoramento da Ictiofauna da Pequena Central Hidrelétrica Presidente Vargas, Município de Telêmaco Borba, Paraná.

SUMÁRIO

1.	EQUIPE TÉCNICA	. 6
2.	INTRODUÇÃO	. 7
3.	MATERIAIS E MÉTODOS	. 8
3.1	Área de estudo	. 8
	Trabalho de Campo	
	Trabalho de Laboratório	
	Análise dos dados	
4	RESULTADOS E DISCUSSÃO	16
5	CONCLUSÕES	50
6	DEFEDÊNCIAS RIBLIOGDÁFICAS	53

LISTA DE FIGURAS

Figura 1. Localização da PCH Presidente Vargas, em relação ao rio Tibagi e as cidades de
Ortigueira e Telêmaco Borba9
Figura 2. Localização dos pontos de coleta da ictiofauna do rio Tibagi - Programa de
Monitoramento da Ictiofauna da PCH Presidente Vagas11
Figura 3. Caracterização fotográfica dos pontos de coleta da ictiofauna do rio Tibagi -
Programa de Monitoramento da Ictiofauna da PCH Presidente Vagas (a) $\#1$, (b) $\#2$, (c) $\#3$
e (d) #412
Figura 4. Demonstração das amostragens com redes de espera para coleta da ictiofauna,
no rio Tibagi (a, b) e a despesca feita pela equipe de pesquisadores (c e d)13
Figura 5. Demonstração das amostragens com tarrafa para coleta da ictiofauna, no rio
Tibagi
Figura 6. Demonstração das amostragens com covos para coleta da ictiofauna, no rio
Tibagi
Figura 7. Demonstração das amostragens com Kicknet para coleta da ictiofauna, no rio
Tibagi
Figura 8. Registro fotográfico dos exemplares capturados: (a) Apareiodon piracicabae; (b)
Hoplias malabaricus; (c) Leporinus elongatus; (d) Leporinus friderici; (e) Leporinus
obtusidens; (f) Schizodon nasutus; (g) Brycon nattereri; (h) Astyanax altiparanae21
Figura 9. Registro fotográfico dos exemplares capturados: (a) Astyanax bockmanni; (b)
Astyanax fasciatus; (c) Astyanax paranae; (d) Galeocharax knerii; (e) Oligosarcus
paranensis; (f) Rhamdia quelen; (g) Iheringichthys labrosus e (h) Pimelodus maculatus.
22
Figura 10. Registro fotográfico dos exemplares capturados: (a) Pimelodus microstoma; (b)
Hypostomus albopunctatus; (c) Hypostomus nigromaculatus; (d) Hypostomus sp; (e)
Loricaria prolixa; (f) Eigenmannia virescens, (g) Geophagus brasiliensis e (h) Salminus
hilarii23
Figura 11. Registro fotográfico de exemplar capturado: (a) Acestrorhynchus lacustris24
Figura 12. Contribuição percentual em número de indivíduos para as principais famílias de
peixes, capturadas nas áreas a montante e a jusante da PCH Presidente Vargas, nas 18
campanhas realizadas24
Figura 13. Contribuição percentual em número de indivíduos para as principais espécies de
peixes, capturadas nas áreas a montante e a jusante da PCH Presidente Vargas, durante
o período de estudo26
Figura 14. Variação média do número de indivíduos (a) e riqueza de espécies de peixes
(b), nos pontos amostrais a montante (#3 e #4) e a jusante (#1 e #2) da PCH Presidente

Vargas, nas 18 campanhas realizadas. O retangulo central indica a media e a caixa
representa a variação do erro padrão em torno da média28
Figura 15. Contribuição percentual em número de indivíduos para as principais espécies de
peixes, capturadas nas áreas a montante e a jusante da PCH Presidente Vargas, nas
amostragens de dezembro de 2015 (a), março (b), junho (c) setembro (d) e dezembro (e)
de 2016; fevereiro (f), julho (g) e outubro de 2017 (h); janeiro (i), abril (j), agosto (k) e
outubro (l) de 2018; janeiro (m), abril (n), julho (o) e setembro (p) de 2019; e fevereiro
(q) de 202033
Figura 16. Variação média do número de indivíduos (a), número de espécies de peixes (b),
diversidade (c) e equitabilidade (d), nas áreas a montante e a jusante da PCH Presidente
Vargas, nas 18 campanhas realizadas. O retângulo central indica a média e a caixa
representa a variação do erro padrão em torno da média
Figura 17. Distribuição de frequência por classe de comprimento para <i>Astyanax</i>
altiparanae, nos pontos amostrais a montante (#3 e #4) e a jusante (#1 e #2) da PCH
Presidente Vargas, nas 18 campanhas realizadas40
Figura 18. Variação média do número de indivíduos de <i>Astyanax altiparanae</i> , por ponto
amostral (a) e ao longo do gradiente temporal de amostragem (b). O retângulo central
indica a média e a caixa representa a variação do erro padrão em torno da média41
Figura 19. Distribuição de frequência por classe de comprimento para <i>Astyanax fasciatus</i> ,
nos pontos amostrais a montante (#3 e #4) e a jusante (#1 e #2) da PCH Presidente
Vargas, nas 18 campanhas realizadas42
Figura 20. Variação média do número de indivíduos de <i>Astyanax fasciatus</i> por ponto
amostral (a) e ao longo do gradiente temporal de amostragem (b). O retângulo central
indica a média e a caixa representa a variação do erro padrão em torno da média44
Figura 21. Dendrograma de agrupamento, com base nos dados de abundância das espécies
de peixes capturadas nos pontos amostrais a montante (#3 e #4) e a jusante (#1 e #2)
da PCH Presidente Vargas, ao longo das 18 amostragens47

LISTA DE TABELAS

Tabela 1. Coordenadas UTM e caracterização dos pontos de amostragem da Ictiofauna da
PCH Presidente Vargas
Tabela 2. Relação das espécies de peixes e suas respectivas frequências em número, nas
áreas a montante e a jusante da PCH Presidente Vargas, durante as campanhas de
dezembro de 2015 (D), março (M), junho (J), setembro (S) e dezembro (D) de 201617
Tabela 3. Relação das espécies de peixes e suas respectivas frequências em número, nas
áreas a montante e a jusante da PCH Presidente Vargas, durante as campanhas de
fevereiro (F), abril (A), julho (J) e outubro (O) de 2017; janeiro (J), abril (A), agosto (A) e
outubro (O) de 201819
Tabela 4. Relação das espécies de peixes e suas respectivas frequências em número, nas
áreas a montante e a jusante da PCH Presidente Vargas, durante as campanhas de janeiro
(J), abril (A), julho (J) e setembro (S) de 2019; e fevereiro de 202020
Tabela 5. Relação das espécies de peixes e suas respectivas frequências em número, por
petrecho amostral, nas áreas a montante e a jusante da PCH Presidente Vargas, durante
as 18 campanhas realizadas
Tabela 6. Frequência de ocorrência absoluta (N), Biomassa (g), Comprimento Médio total,
Amplitude de Comprimento, Peso Médio total e Amplitude de Peso, das espécies de peixes
capturadas nas áreas a montante e a jusante da PCH Presidente Vargas, nas 18 campanhas
amostrais45
Tabela 7. Nomenclatura científica e vulgar e status de conservação das espécies capturadas
no presente estudo, para o Programa de Monitoramento Ambiental da Ictiofauna da PCH
Presidente Vargas48

1. EQUIPE TÉCNICA

Nome	Formação	Área de atuação	Registro IBAMA	Registro Profissional
Josiane Rovedder, MSc.	Bióloga	Coordenadora Geral e Geoprocessamento	355459	CRBIO 45049/03-D
Martin Homelchin	Eng° Ambiental	Coleta e Logística	1509629	CREA-SC 079803-6
Felipe Freitas Junior, MSc.	Oceanógrafo	Responsável pela Ictiofauna	2253655	AOCEANO 2224
Juliano Cesar Hillesheim	Biólogo	Responsável pela Ictiofauna	501518	CRBIO 53781-03D

2. INTRODUÇÃO

Atualmente são conhecidas 1,8 milhão de espécies de organismos vivos (COX & MOORE, 2000), dos quais aproximadamente 55.000 são vertebrados, e dentre estes, cerca de 28.000 são peixes (NELSON, 2006). A maior parte dessa riqueza e diversidade se encontra em águas tropicais (LOWE-MACCONNELL, 1999), especialmente em águas doces neotropicais, habitadas por algo estimado em 5.000 espécies válidas de peixes, podendo chegar a 8.000 se inclusas as novas espécies já reconhecidas por especialistas, porém ainda não descritas na literatura científica (SCHAEFER, 1998 e REIS *et al.* 2003). Grande parte destas espécies ocorre no Brasil, para onde foram registradas 2.587 espécies de peixes (BUCKP *et al.*, 2007), sendo que para a Bacia Hidrográfica do rio Paraná são descritas aproximadamente 600 espécies de peixes (BONETTO, 1986).

Os peixes constituem umas das principais razões do interesse do homem pelo estudo de ecossistemas aquáticos. Destacam-se entre os principais recursos potencialmente exploráveis nestes ambientes, pelo expressivo suprimento de proteínas e pela notável biomassa disponível, variando sua composição e abundância relativa em função das características hidrológicas, de acordo com a localidade e a variação sazonal (CASTRO, 2001). Além disto, desempenham um importante papel ecológico, transformando o potencial energético dos detritos ao conduzir a energia para níveis tróficos superiores (YAÑEZ-ARANCIBIA, 1985). Podem ainda ser utilizados como indicadores de qualidade ambiental, como sugerido por Lyons *et al.* (1995), onde riachos com boas condições de integridade tendem a ser ocupados por espécies de peixes nativas com várias classes de tamanho e estrutura trófica balanceada, com desaparecimento das espécies mais sensíveis e alteração nesta estrutura na medida em que a influência antrópica aumenta.

O rio Tibagi, no qual está inserida a Pequena Central Hidrelétrica Presidente Vargas, possui 550 quilômetros de extensão com cerca de 90 saltos e cachoeiras, tendo sua nascente localizada na Serra das Almas entre Ponta Grossa e Palmeira, a 1.100 metros de altitude, desaguando no reservatório da Usina Hidrelétrica de Capivara, no rio Paranapanema, a 298 m de altitude (PEREIRA & SCROCCARO, 2010). É considerada a terceira maior bacia do Estado do Paraná e o maior afluente paranaense do rio Paranapanema, abrangendo ao longo de sua extensão, uma grande diversidade de ambientes sob matriz de florestas (Ombrófila Mista e Estacional Semidecidual), intercaladas com encraves de savanas (Cerrado) e estepes (Campos) que se manifestam de acordo com as gradações altitudinal e orográfica (DE FRANÇA, 2002).

Segundo Raio e Bennemann (2010), o rio Tibagi é um dos poucos da região que vêm sendo estudado desde a década de 80, e apesar de apresentar uma elevada diversidade de peixes, vem sendo exposto a diversos impactos antrópicos ao longo de sua extensão (especialmente relacionados à construção de empreendimentos do setor elétrico), resultando em uma diminuição na abundância de peixes. Dados históricos revelam que durante as primeiras incursões a campo para caracterizar a ictiofauna deste rio, foram observadas 69 espécies de peixes (BENNEMANN *et al.*, 1995). Estudos complementares ao longo de seus afluentes e subafluentes vêm demonstrando um incremento no conhecimento da ictiofauna local, sendo catalogadas 110 espécies de peixes nos trabalhos de Shibatta *et al.* (2002), alcançando 151 espécies no estudo de Raio e Bennemann (2010).

Considerando a importância ecológica e econômica (pesca artesanal e recreacional) da ictiofauna, bem como a questão emblemática da instalação de empreendimentos do setor elétrico, com possíveis interferências nestas comunidades faunísticas, o presente trabalho teve como objetivo identificar e quantificar as espécies de peixes presentes nas regiões à jusante e a montante da barragem da Pequena Central Hidrelétrica – PCH Presidente Vargas, durante as campanhas de dezembro de 2015; março, junho, setembro e dezembro de 2016; fevereiro, abril, julho e outubro de 2017; janeiro, abril, agosto e novembro de 2018; janeiro, abril, julho e setembro de 2019; e fevereiro de 2020. Os resultados obtidos foram confrontados com o conhecimento técnico-científico disponível para a região comparando a informação obtida com dados pretéritos.

3. MATERIAIS E MÉTODOS

3.1 Área de estudo

A Pequena Central Hidrelétrica Presidente Vargas está localizada no rio Tibagi, na divisa dos municípios de Telêmaco Borba e Ortigueira (Figura 1) Foi licenciada com objetivo de atender às necessidades das indústrias da Klabin e de alguns núcleos habitacionais da região, como Lagoa e Harmonia, na Fazenda Monte Alegre. O reservatório da PCH possui uma área equivalente a 7,64 hectares, limitada a norte pela sua barragem e a sul pela barragem da Usina Hidrelétrica Mauá. A bacia hidrográfica que drena diretamente para o reservatório da PCH Presidente Vargas corresponde a uma área de 351 hectares, algo em torno de 0,014% da bacia do rio Tibagi.

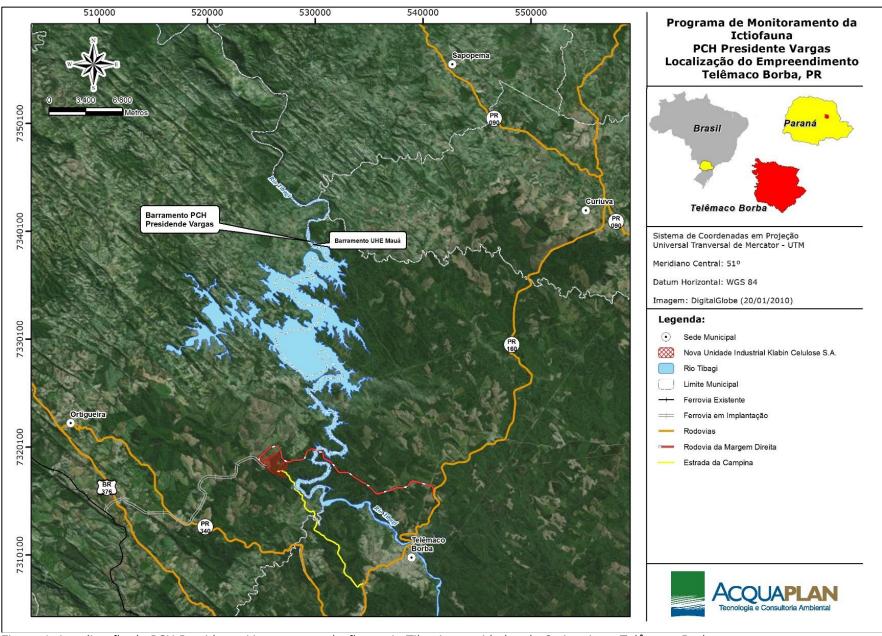


Figura 1. Localização da PCH Presidente Vargas, em relação ao rio Tibagi e as cidades de Ortigueira e Telêmaco Borba.

3.2 Trabalho de Campo

O presente relatório contempla 18 amostragens trimestrais, para o monitoramento da ictiofauna nos pontos a montante (# 3 e #4) e a jusante (# 1 e # 2) da barragem da PCH Presidente Vargas (Tabela 1, Figura 2 e Figura 3). As coletas foram realizadas entre os dias 16 a 18 de dezembro de 2015 (primeira coleta), 19 a 21 de março de 2016 (segunda coleta), 25 a 27 de junho de 2016 (terceira coleta), 19 a 21 de setembro de 2016 (quarta coleta), 10 a 12 de dezembro de 2016 (quinta coleta), 23 a 25 de fevereiro de 2017 (sexta coleta), 19 a 21 de abril de 2017 (sétima coleta), 29 a 31 de julho de 2017 (oitava coleta), 28 a 30 de outubro de 2017 (nona coleta), 20 a 22 de janeiro de 2018 (décima coleta), 23 a 25 de abril de 2018 (décima primeira coleta), 15 a 17 de agosto de 2018 (décima segunda coleta), 24 a 26 de outubro de 2018 (décima terceira coleta), 31 de janeiro a 02 de fevereiro de 2019 (décima quarta coleta), 24 a 26 de abril de 2019 (décima quinta coleta), 02 a 04 de julho de 2019 (décima sexta coleta), 24 a 26 de setembro de 2019 (décima sétima coleta) e 10 a 12 de fevereiro de 2020 (décima oitava coleta), com auxílio de redes de espera, tarrafas, covos e kicknet, nas áreas marginais dos pontos amostrais Figura 4 e Figura 7).

Devido à elevada vazão da água, não foi possível realizar as coletas no ponto amostral 3, no período de 25 a 27 de junho de 2016. Na quarta coleta, também não foi amostrado no dia 21 de setembro de 2016, em todos os pontos amostrais, em decorrência da abertura das comportas, o que ocasionou o carreamento das redes utilizadas na amostragem. Por outro lado, para a sétima amostragem (19 a 21 de abril de 2017), não foi possível a captura de exemplares ao longo dos pontos amostrais, em virtude da atividade de manutenção da PCH Presidente Vargas, onde o reservatório foi abaixado para o leito original do rio, deixando o canal de fuga completamente sem água. Na oitava campanha, no segundo e terceiro dia de amostragens (dias 30 e 31 de julho de 2017), foram furtadas as redes de espera nos pontos amostrais #03 e #04.

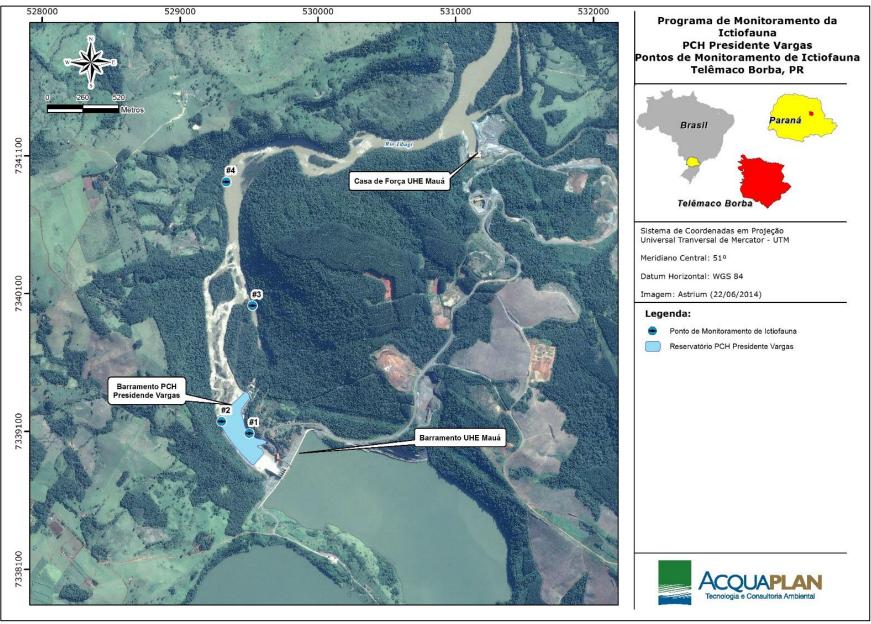


Figura 2. Localização dos pontos de coleta da ictiofauna do rio Tibagi - Programa de Monitoramento da Ictiofauna da PCH Presidente Vagas.

Tabela 1. Coordenadas UTM e caracterização dos pontos de amostragem da Ictiofauna da PCH Presidente Vargas.

Ponto	UTM WG	S84 22S	Caracterização dos Pontos amostrais									
Ponto	X	Υ	Caracterização dos Pontos amostrais									
#1	529503,5	7339085	Ponto mais próximo a PCH, com profundidade entre 2 a 3 metros, fundo rochoso, bem próximo a corredeiras, entretanto as amostragens foram realizadas num trecho da margem com característica mais próxima de um rio semi-lótico, margeada por vegetação de médio e grande porte.									
#2	529301,9	7339171	Profundidade de 3 metros, com fundo mais arenoso, margeada por vegetação de médio e grande porte. Coletas realizadas na margem, porém com velocidade de corrente superior ao ponto 1.									
#3	529526,5	7340012	Profundidade entre 2 a 3 metros, com substrato rochoso e elevada velocidade de água, com características lóticas (corredeira).									
#4	529336,4	7340911	Ponto mais distante da PCH, e com águas mais calmas (características semli-lóticas), profundidade entre 1,5 a 3 metros, com substrato arenoso, margeado por mata ciliar bem preservada e vegetação de médio a grande porte.									

Figura 3. Caracterização fotográfica dos pontos de coleta da ictiofauna do rio Tibagi - Programa de Monitoramento da Ictiofauna da PCH Presidente Vagas (a) #1, (b) #2, (c) #3 e (d) #4.

Para a captura dos exemplares da ictiofauna foram armadas três redes de espera, com malhas de 4 cm, 8 cm e 14 cm entre nós opostos, em cada um dos quatro pontos

amostrais, totalizando 12 redes, as quais permaneceram submersas por um período de 72 h, com intervalo de 24 horas entre as despescas (Figura 4a, b, c e d).

Figura 4. Demonstração das amostragens com redes de espera para coleta da ictiofauna, no rio Tibagi (a, b) e a despesca feita pela equipe de pesquisadores (c e d).

Foram ainda realizados a cada amostragem 40 lances de tarrafa (malha de 1,5 cm ente nós opostos), sendo 10 em cada ponto amostral (Figura 5) bem como, armado uma armadilha tipo covo para captura de peixes (Figura 6), em cada ponto (4 no total), durante um período de 12 horas, com intervalo de seis horas entre as revisões e realizados lances com o kicknet (Figura 7) durante 15 minutos em cada ponto de amostragem.

Os peixes capturados foram então acondicionados em sacos plásticos devidamente etiquetados por ponto amostral, fixados em solução de formalina a 10% e posteriormente transportados ao laboratório.

Figura 5. Demonstração das amostragens com tarrafa para coleta da ictiofauna, no rio Tibagi.

Figura 6. Demonstração das amostragens com covos para coleta da ictiofauna, no rio Tibagi.

Figura 7. Demonstração das amostragens com Kicknet para coleta da ictiofauna, no rio Tibagi.

3.2 Trabalho de Laboratório

Em laboratório, os peixes foram identificados ao menor nível taxonômico possível utilizando guias de identificação especializados, onde foi registrado o número de exemplares e realizada a biometria, em que foram mensurados o comprimento total (Lt) em centímetros, obtido entre a ponto do focinho até a extremidade da nadadeira caudal e o peso total (Wt) em gramas. Cada indivíduo foi também fotografado.

Todas as espécies coletadas foram classificadas com relação ao seu grau de ameaça, consultando a Lista das Espécies da Fauna Brasileira Ameaçadas de Extinção (ROSA & LIMA, 2008), Lista das Espécies da Fauna Ameaçadas de Extinção no Paraná (CURITIBA, 2006) e União Internacional de Conservação da Natureza – IUCN (IUCN, 2016).

A classificação taxonômica, nomenclatura científica e popular seguiu os trabalhos de Casatti et al. (2001), Castro et al. (2003), Shibatta et al. (2002, 2007), Ingenito et al. (2004), Vari & Castro, (2007) Ribeiro & Lucena, (2007), Brito et al. (2008), Marceniuk et al. (2011), Britski et al. (2012), Azpelicueta & Britski (2012), Baumgartner et al. (2012), Garavello et al. (2012) e Hoffmann et al. (2015).

3.3 Análise dos dados

Os dados obtidos foram tabelados no programa Excel 2007, sendo confeccionada uma tabela com a abundância de organismos capturados durante o estudo. A medida de abundância foi considerada como o número total de peixes coletados em cada ponto amostral.

Para a análise da diversidade específica foram utilizados os Índices de Shannon-Wiener (H'), dado pela equação:

$$H' = -\sum_{i=1}^{S} (pi) \ln(pi)$$

Para o cálculo da equitabilidade foi utilizado o Índice de Pielou (J'), dado por:

$$J' = \frac{H'}{\ln(S)}$$

A riqueza de espécies foi calculada através do Índice de Margalef:

$$d = \frac{(S-1)}{\ln(N)}$$

Onde S é o número de espécies, n é o número total de indivíduos e ni é o número de indivíduos da espécie i.

A partir dos dados de comprimento total (Lt) foram confeccionados gráficos com as distribuições de frequência por classe de comprimento total, a fim de se caracterizar a estrutura populacional das espécies dominantes.

4 RESULTADOS E DISCUSSÃO

Durante o período de dezembro de 2015 a fevereiro de 2020, foi capturado um total 3.470 exemplares de peixes, nas áreas a montante e a jusante da pequena hidrelétrica PCH Presidente Vargas, os quais estiveram distribuídos em quatro ordens, dez famílias, 17 gêneros e 25 espécies, perfazendo um total de 112.138,02 gramas (Tabela 2, Tabela 3, Tabela 4 e Tabela 5). O registro fotográfico de todas as espécies capturadas encontra-se na Figura 8, Figura 9, Figura 10, Figura 11.

Num contexto regional, levantamentos realizados ao longo da bacia do rio Tibagi, têm demonstrado um incremento em número de espécies ao longo dos anos, sendo observadas 69 espécies de peixes nos trabalhos de Bennemann *et al.* (1995), enquanto que abordagens mais recentes, ao longo de seus afluentes e subafluentes, revelaram a ocorrência de 110 (SHIBATTA *et al.*, 2002) a 153 espécies (PELICICE *et al.*, 2005, RAIO & BENNEMAN, 2010).

Para Pelicice et al. (2005), apesar deste elevado valor de riqueza regional de espécies citado acima, assembleias locais tendem a apresentar valores consideravelmente mais baixos, oscilando entre 3 a 39 espécies, sendo esta uma tendência observada em várias partes do mundo (MATTHEWS, 1998). Sendo assim, a composição de 25 espécies (Tabela 2, Tabela 3 e Tabela 4) no presente estudo, para um trecho local da região média do rio Tibagi, parece se enquadrar dentro do padrão descrito por Matthews, (1998) e Pelicice et al. (2005).

Tabela 2. Relação das espécies de peixes e suas respectivas frequências em número, nas áreas a montante e a jusante da PCH Presidente Vargas, durante as campanhas de dezembro de 2015 (D), março (M), junho (J), setembro (S) e dezembro (D) de 2016.

Ponto 1 Ponto 2 Ponto 3 Ponto 4 TAXA D/15 | M/16 | J/16 | S/16 D/16 | D/15 | M/16 | J/16 | S/16 | D/16 | D/15 | M/16 | J/16 | S/16 | D/16 | D/15 | M/16 | J/16 | S/16 | D/16 **Ordem Characiformes** Família Parodontidae Apareiodon piracicabae Família Erythrinidae Hoplias malabaricus Família Anostomidae Leporinus elongatus Leporinus friderici Leporinus obtusidens Schizodon nasutus Família Characidae Astyanax altiparanae Astyanax bockmanni Astyanax fasciatus Astyanax paranae Brycon nattereri Galeocharax knerii Oligosarcus paranensis **Ordem Siluriformes** Família Heptapteridae Rhamdia quelen Família Pimelodidae Iheringichthys labrosus Pimelodus maculatus Pimelodus microstoma

TAXA		I	Ponto 1	l			ı	Ponto 2	2			,	Ponto 3	3		Ponto 4					
	D/15	M/16	J/16	S/16	D/16	D/15	M/16	J/16	S/16	D/16	D/15	M/16	J/16	S/16	D/16	D/15	M/16	J/16	S/16	D/16	
Família Loricariidae																					
Hypostomus albopunctatus										1											
Hypostomus nigromaculatus			1				1			1		4			1					3	
Hypostomus sp.																		1			
Loricaria prolixa																				1	
Ordem Gymnotiformes																					
Família Sternopygidae																					
Eigenmannia virescens											1										
Ordem Perciformes																					
Família Cichlidae																					
Geophagus brasiliensis							1									1				1	
Número de Indivíduos	135	272	56	121	31	158	90	170	58	16	125	105	0	67	7	472	55	197	49	7	
Total de Espécies	8	8	10	4	4	8	10	5	4	5	10	10	0	4	5	14	6	7	3	5	
Riqueza	1,42	1,25	2,23	0,62	0,87	1,38	2	0,78	0,73	1,44	1,86	1,93	-	0,71	2,05	2,11	1,25	1,13	0,51	2,05	
Diversidade	1,59	1,08	1,44	0,68	0,42	1,5	1,51	0,62	1	1,03	1,64	1,64	-	0,84	1,54	1,34	1,29	1,11	0,64	1,47	
Equitabilidade	0,76	0,52	0,62	0,49	0,3	0,72	0,65	0,38	0,72	0,64	0,71	0,71	-	0,61	0,96	0,5	0,72	0,57	0,58	0,91	

Tabela 3. Relação das espécies de peixes e suas respectivas frequências em número, nas áreas a montante e a jusante da PCH Presidente Vargas, durante as

campanhas de fevereiro (F), abril (A), julho (J) e outubro (O) de 2017; janeiro (J), abril (A), agosto (A) e outubro (O) de 2018.

		J (1)	, abi		ito 1	10 (3	<i>,</i> c c	acabi	F/17 A/17 J/17 J/18 A/18 A/18																	Ponto 4								
TAXA	F/17	A/17	1/47			4/10	4/10	0/10	F/47	4/47	1/47			4/10	4/10	0/10	F/47	4/47	1/47			4/10	A /10	0/10	F/47		- -/-				1 4/10	0/10		
Ordem	F/1/	A/1/	J/1/	0/1/	J/18	A/18	A/18	0/18	F/1/	A/1/	J/1/	0/1/	J/18	A/18	A/18	0/18	F/1/	A/1/	J/1/	0/1/	J/18	A/18	A/18	0/18	F/1/	/ A/1	/ J/1	7 0/:	./ J/:	18 A/18	A/18	0/18		
Characiformes																																		
Família Parodontidae																																		
Apareiodon piracicabae																				1														
Família Erythrinidae																																		
Hoplias malabaricus																																		
Família Anostomidae																																		
Leporinus elongatus													1							1				1					1					
Leporinus friderici													1												1									
Leporinus obtusidens								1														2							1					
Schizodon nasutus					1		2						7							1	1			1					2					
Família Characidae																																		
Astyanax altiparanae	16			11	13	10	8	9	15		3	6	8	11	6	7	20			22	10	14	3	7	26			26	1	10	14	15		
Astyanax bockmanni	1						2					4			4	1								1				1			3	4		
Astyanax fasciatus	6		3	3	5	3	42	20	3		12	6		1	31	18	4			4	7	4	12	12	6			7	6		17	14		
Astyanax paranae				1																6	1													
Brycon nattereri																																		
Galeocharax knerii	4			6	16	6	6	13	12			4	10	12	5	10	4			2	10	9	1	12	12				1	5 6		8		
Oligosarcus paranensis	3					1					6	1									2								5		1			
Família Salmininae																																		
Salminus hilarii						1								1																1				
Ordem Siluriformes																																		
Família																																		
Heptapteridae Rhamdia quelen			1																															
Família Pimelodidae			1																															
Iheringichthys labrosus																																		
Pimelodus maculatus	1																															 		
Pimelodus microstoma	1												1																					
Família Loricariidae													1																					
Hypostomus																																		
albopunctatus				2									2							1					1			1			1			
Hypostomus																																		
nigromaculatus			3	4				ļ			1	3	1	ļ															_	1				
Hypostomus sp.	 				ļ		ļ				ļ														1		_		_		1			
Loricaria prolixa					_																				1	_		_	_		_			
Ordem Gymnotiformes																																		
Família	1																																	
Sternopygidae																																		
Eigenmannia virescens																																		
Ordem Perciformes																																		
Família Cichlidae																																		
Geophagus brasiliensis						1																												
Número de	1						1																		1		1				1			
Indivíduos	30	0	7	27	35	22	60	43	30	0	22	24	31	25	46	36	28	0	0	38	31	29	16	34	46	0	0	35	. 4	18	36	41		
Total de Espécies	5	0	3	6	4	6	5	4	3	0	4	6	8	4	4	4	3	0	0	8	6	4	3	6	5	0					5	4		
Riqueza	1,17	-	1,02	1,51	0,84	1,61	0,97	0,79	0,58	-	0,97	1,57	2,03	0,93	0,78	0,83	0,60	-	-	1,92	1,45	0,89	0,72	1,41	1,04	-		0,8	4 1,	7 1,03	1,11	0,80		
Diversidade	1,26	-	1,00	1,54	1,10	1,40	0,97	1,13	0,94	-	1,09	1,68	1,67	0,97	0,98	1,12	0,79	-	-	1,38	1,46	1,17	0,70	1,37		-	_	0,7		5 1,01	1,12	1,28		
Equitabilidade	0,78	-	0,91	0,86	0,79	0,78	0,60	0,81	0,85	-	0,79	0,93	0,80	0,70	0,71	0,80	0,72	-	-	0,66	0,81	0,84	0,63	0,76	0,68	: -	-	0,5	3 0,	9 0,73	0,70	0,92		

Tabela 4. Relação das espécies de peixes e suas respectivas frequências em número, nas áreas a montante e a jusante da PCH Presidente

Vargas, durante as campanhas de janeiro (J), abril (A), julho (J) e setembro (S) de 2019; e fevereiro de 2020.

TAXA		ı	Ponto 1	L			ı	Ponto 2	2				Ponto 3	3		Ponto 4						
	J/19	A/19	J/19	S/19	F/20	J/19	A/19	J/19	S/19	F/20	J/19	A/19	J/19	S/19	F/20	J/19	A/19	J/19	S/19	F/20		
Ordem Characiformes																						
Família Parodontidae										-1				-1				-	-			
Apareiodon piracicabae										1				1				1	1	2		
Família Erythrinidae										4												
Hoplias malabaricus										1												
Família Anostomidae																						
Leporinus elongatus																				<u> </u>		
Leporinus friderici									1								1					
Leporinus obtusidens	1																					
Schizodon nasutus			1			2		1		1	1						1					
Família Characidae																						
Astyanax altiparanae	8	1	5	2	6	10	1	6	9	4	4		8	3	4	8	1	1	12	12		
Astyanax bockmanni				1		1		2					3					3		1		
Astyanax fasciatus	2	1	21	23	1	2		19	20	3	5		15	12	1	1		38	13	21		
Astyanax paranae																						
Brycon nattereri																						
Galeocharax knerii	9	1	1	7	11	7	2	1	4	9	4	2		2	12	9			2			
Oligosarcus paranensis			1		2			1		1					3							
Acestrorhynchus lacustris																		1				
Família Salmininae																						
Salminus hilarii																						
Ordem Siluriformes																						
Família Heptapteridae																						
Rhamdia quelen				1			1		1									1				
Família Pimelodidae																						
Iheringichthys labrosus								1														
Pimelodus maculatus		2										1						2				
Pimelodus microstoma																						
Família Loricariidae																						
Hypostomus albopunctatus					1															1		
Hypostomus nigromaculatus			1		2				1	3							1					
Hypostomus sp.			<u> </u>						-								1			 		
Loricaria prolixa																				 		
Ordem Gymnotiformes																						
Família Sternopygidae																						
Eigenmannia virescens																						
Ordem Perciformes																						
Família Cichlidae																						
Geophagus brasiliensis		1																				
Número de Indivíduos	20	6	30	34	23	22	4	31	36	23	14	3	26	18	20	18	4	47	28	37		
Total de Espécies	4	5	6	5	6	5	3	7	6	8	4	2	3	4	4	3	4	7	4	5		
Riqueza	1,01	2,23	1,47	1,13	1,60	1,29	1,44	1,74	1,39	2,23	1,13	0,91	0,61	1,03	1,00	0,69	2,16	1,55	0,90	1,10		
Diversidade	1,01	1,56	1,00	0,96	1,40	1,29	1,04	1,23	1,21	1,75	1,27	0,63	0,93	0,97	1,06	0,86	1,38	0,81	1,02	1,04		
Equitabilidade	0.79	0.97	0,56	0,60	0,78	0,80	0,95	0,63	0,67	0,84	0,91	0,63	0,93	0,97	0,76	0,88	1,00	0,81	0.74	0,64		

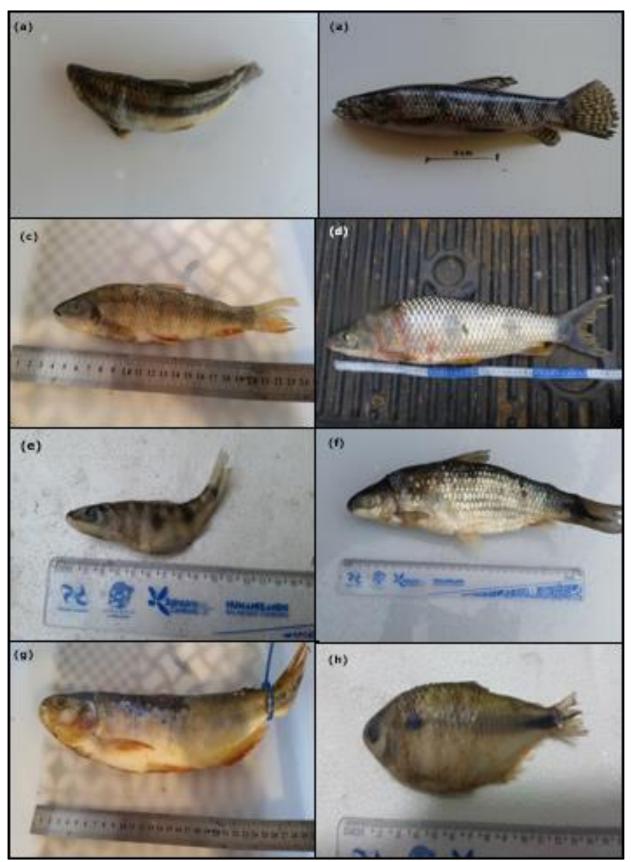


Figura 8. Registro fotográfico dos exemplares capturados: (a) Apareiodon piracicabae; (b) Hoplias malabaricus; (c) Leporinus elongatus; (d) Leporinus friderici; (e) Leporinus obtusidens; (f) Schizodon nasutus; (g) Brycon nattereri; (h) Astyanax altiparanae.

Figura 9. Registro fotográfico dos exemplares capturados: (a) Astyanax bockmanni; (b) Astyanax fasciatus; (c) Astyanax paranae; (d) Galeocharax knerii; (e) Oligosarcus paranensis; (f) Rhamdia quelen; (g) Iheringichthys labrosus e (h) Pimelodus maculatus.

Figura 10. Registro fotográfico dos exemplares capturados: (a) *Pimelodus microstoma*; (b) *Hypostomus albopunctatus*; (c) *Hypostomus nigromaculatus*; (d) *Hypostomus sp*; (e) *Loricaria prolixa*; (f) *Eigenmannia virescens*, (g) *Geophagus brasiliensis* e (h) *Salminus hilarii*.

Figura 11. Registro fotográfico de exemplar capturado: (a) Acestrorhynchus lacustris.

As ordens Characiformes e Siluriformes foram dominantes em número de espécies e abundância de exemplares (Tabela 2, Tabela 3 e Tabela 4), o que está de acordo com o padrão descrito por Lowe-McConnell, (1999) para os sistemas de água-doce neotropicais. Esta tendência também tem sido observada nos trabalhos realizados na bacia do rio Tibagi por Bennemann *et al.* (1995 e 2000), Shibatta *et al.* (2002 e 2007), Hoffman *et al.* (2005), Pelicice *et al.* (2005), Sant'Anna *et al.* (2006) e Langeani *et al.* (2007).

A família Characidae foi responsável por 94,18% da abundância dos peixes coletados, nas 18 coletas/campanhas realizadas, seguida por Pimelodidae com 2,02%, Anostomidae (1,67%) e Loricariidae (1,30%) (Tabela 2, Tabela 3, Tabela 4 e Figura 12). As demais famílias representaram em conjunto, apenas 0,84% dos peixes amostrados (Tabela 2, Tabela 3, Tabela 4 e Figura 12).

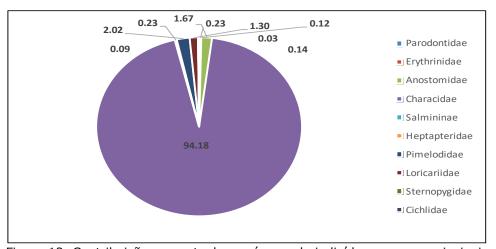


Figura 12. Contribuição percentual em número de indivíduos para as principais famílias de peixes, capturadas nas áreas a montante e a jusante da PCH Presidente Vargas, nas 18 campanhas realizadas.

Segundo Ferreira *et al.* (1993) a ordem Characiformes compreende a grande maioria de peixes de água doce do Brasil, com mais de 950 espécies descritas para a região Neotropical. A elevada participação da família Characidae é decorrente da ampla distribuição de suas espécies em água doce, além desta família incluir a maioria das espécies de peixes de águas interiores do Brasil (BRITSKI, 1972).

A predominância de Characidae no presente estudo esteve fundamentada na elevada contribuição das espécies *Astyanax fasciatus* (Cuvier, 1819) (Figura 9b) e *Astyanax altiparanae* Garutti & Britski, (2000) (Figura 8h), que em conjunto contribuíram com 71,64% de todos os peixes capturados (Figura 13). Tal dominância numérica muito provavelmente está relacionada com a grande capacidade adaptativa das espécies deste gênero, devido à flexibilidade de hábitos alimentares e a capacidade de reprodução em diversos hábitats, permitindo sua ampla distribuição e abundância ao longo da bacia do rio Tibagi (BENNEMANN *et al.* 2000, 2002 e 2005, ORSI *et al.*, 2004 e HOFFMAN *et al.*, 2005).

Além de *A. fasciatus* e *A. altiparanae* foi observada simpatria com outras duas espécies do gênero, com *Astyanax bockmanni* (Vari & Castro, 2007) (Figura 9a) contribuindo com 8,88% da abundância e *Astyanax paranae* (Eigenmann, 1914) (Figura 9c) com 2,62% (Figura 13). A saicanga, *Galeocharax knerii* (Steindachner, 1879) (Figura 9d) foi a terceira espécie em abundância representando 9,39% dos peixes capturados, seguido de *Oligosarcus paranensis* Menezes & Géry, 1983 (Figura 9e) (1,59%) e *Iheringichthys labrosus* (Kröyer, 1874) (Figura 9g) com 1,30% (Figura 13). As demais espécies em conjunto contribuíram com apenas 4,58% do total amostrado, o que está de acordo com os trabalhos realizados na bacia do rio Tibagi, onde apesar do grande número de espécies observadas regionalmente (151 ou 153, como citado no trabalho de Pelicice *et al.*, 2005), poucas se sobressaem em número de indivíduos (SHIBATTA *et al.*, 2002 e 2007, HOFFMAN *et al.*, 2005, PELICICE *et al.*, 2005 e LANGEANI *et al.*, 2007).

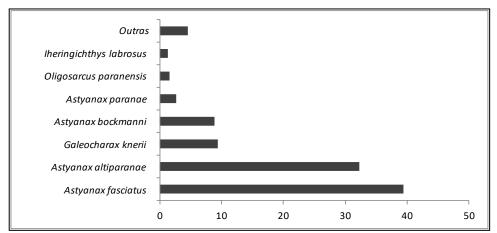


Figura 13. Contribuição percentual em número de indivíduos para as principais espécies de peixes, capturadas nas áreas a montante e a jusante da PCH Presidente Vargas, durante o período de estudo.

Em afluentes e subafluentes das regiões média e inferior da bacia do rio Tibagi, Shibatta et al. (2002) destacaram a presença de quatro espécies de Astyanax: A. altiparanae, A. eigenmanniorum (Cope, 1894) (recentemente reclassificada como A. bockmanni), A. fasciatus e A. scabripinnis (Jenyns, 1842), esta última muito provavelmente pertencente ao complexo A. paranae. Espécies estas, presentes em simpatria no presente estudo/monitoramento, com participações distintas ao longo das áreas amostradas, demonstrando as diferentes formas de ocupação ao longo do gradiente amostral, muito provavelmente em função das estratégias alimentares e utilização do espaço (presença de abrigos/diversidade de habitats entre os locais comparados) (BENNEMANN et al., 2000, 2002 e 2005, ORSI et al., 2004 e HOFFMAN et al., 2005).

É importante destacar que nas áreas de maior velocidade de corrente, como nos pontos 1 e 3 (Tabela 1 e Figura 3), houve uma pequena dominância de *A. altiparanae* sobre as demais espécies deste gênero (dez/15), alternando suas participações na comunidade com *A. fasciatus*, especialmente nas coletas de junho e setembro de 2016, em que o rio apresentava elevada vazão de água (Tabela 2, Tabela 3 e Tabela 4). Por outro lado, no ponto 4 (característica de rio semi-lótico) este domínio (dez/15) foi mais acentuado, o que segundo Orsi *et al.* (2004) e Bennemann *et al.* (2002 e 2005), está de acordo com a biologia da espécie, que apesar de sua ampla distribuição e capacidade adaptativa destacada acima, tem preferência por águas mais calmas, nas margens dos rios da bacia do Tibagi.

Ainda neste sentido, o de distribuição diferenciada das espécies ao longo dos pontos amostrais, Araújo-Lima, (1995) definem ambientes distintos nos corpos aquáticos, identificando proporções diferenciadas entre espécies de Characiformes e Siluriformes que mudam marcadamente sua proporção em relação ao hábitat. Em geral, nos ambientes

próximos às margens é observada uma maior participação das espécies de Characiformes, enquanto os Siluriformes e Gymnotiformes são mais abundantes nos canais de rios e no fundo (BENNEMANN et al., 2000 e 2002). Tal configuração pôde ser observada claramente ao longo dos pontos amostrais, onde nos pontos 1 e 2 (onde as coletas foram realizadas nas margens do rio), houve um predomínio dos Characiformes e pequena participação dos Siluriformes, enquanto que no ponto 3 onde a amostragem foi mais no canal do rio já foram observadas mais espécies de Siluriformes, além da presença exclusiva do Gymnotiforme Eigenmannia virescens (Valenciennes, 1847) (Tabela 2, Tabela 3, Tabela 4).

No ponto 4, caracterizado por apresentar águas mais tranquilas (rio semi-lótico) apesar da dominância dos Characiformes, foi observada uma maior participação dos Siluriformes se comparado com as demais áreas. Isto indica que, provavelmente estas espécies apresentem preferência por águas mais calmas no fundo dos rios, uma vez que foram capturados no fundo do canal por tarrafas e covos e na parte inferior das redes (Tabela 5).

Por outro lado, os Characidae foram mais abundantes nas margens do canal, na porção superficial da coluna d'água. Tais configurações estão de acordo com o apresentado por Bennemann *et al.* (2000 e 2002), demonstrando as interações interespecíficas de coexistência entre as espécies, ou seja, para não competirem entre si apresentam diferentes formas de alimentação e utilização do espaço ao longo do gradiente amostral.

As maiores abundâncias de exemplares foram também observadas no ponto 4, assim como, as maiores riquezas de espécies, sendo observadas 24 das 25 espécies coletadas no presente estudo, com quatro exclusivas deste ambiente, como a pirapitinga *Brycon nattereri* Günther, 1864 (Figura 8g), a bocarra *Acestrorhynchus lacustris* (Lütken, 1875) (Figura 11a), o cascudo *Hypostomus sp.* (Figura 10d) e o cascudo-chinelo *Loricaria prolixa* Isbrücker & Nijssen, 1978 (Figura 10e) (Tabela 2, Tabela 3, Tabela 4, e Figura 14).

Contudo como comentado anteriormente, apesar desta maior diversidade, o elevado predomínio de *A. altiparanae* (dez/15) e de *A. fasciatus* (jun/16), sobre as demais espécies nesta porção do rio, acabou reduzindo a equitabilidade deste local, especialmente para as coletas de dezembro de 2015 (Tabela 2, Tabela 3 e Tabela 4).

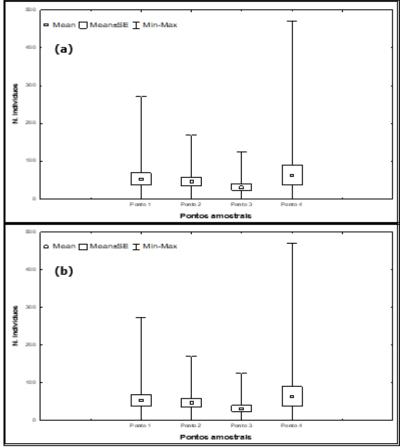


Figura 14. Variação média do número de indivíduos (a) e riqueza de espécies de peixes (b), nos pontos amostrais a montante (#3 e #4) e a jusante (#1 e #2) da PCH Presidente Vargas, nas 18 campanhas realizadas. O retângulo central indica a média e a caixa representa a variação do erro padrão em torno da média.

Comparativamente, as amostragens de dezembro de 2015, março, junho, setembro, dezembro de 2016, fevereiro, abril, julho, outubro de 2017, janeiro, abril, agosto e outubro de 2018, janeiro, abril, julho, setembro de 2019 e fevereiro de 2020 revelaram mudanças na composição da comunidade de peixes, ao longo dos pontos amostrais de influência da PCH Presidente Vargas, com o incremento de três novas espécies em março de 2016: Leporinus elongatus (Valenciennes, 1849) (Figura 8c), Brycon nattereri (Günther, 1864) (Figura 8g) e Hypostomus nigromaculatus (Schubart, 1964) (Figura 10c) e duas em junho de 2016: Schizodon nasutus (Kner, 1859) (Figura 8f) e Hypostomus sp. (Figura 10d) (Tabela 2). Ao passo que em setembro de 2016 não foi verificada a ocorrência de novos táxons, com apenas cinco espécies registradas nas amostragens. Contudo, como mencionado na metodologia, no mês de setembro, devido à abertura das barragens e o carreamento das redes dos pontos de coleta, foi efetuado um esforço de um dia a menos de coleta (21/09), que possivelmente tenha influenciado na riqueza e abundância de peixes.

Em dezembro de 2016, embora tenha sido capturado o menor número de peixes entre os meses de amostragem (em virtude do baixo nível dos rios e consequentemente, deslocamento para outras regiões), foram observadas três novas espécies, sendo estas o canivete *Apareiodon piracicabae* (Figura 8a), o cascudo *Hypostomus albopunctatus* (Regan, 1908) (Figura 10b) e o cascudo-chinelo *Loricaria prolixa* (Figura 10e). Tais resultados demonstram a complexidade dos ecossistemas amostrados e a necessidade da continuidade dos estudos de monitoramento, perante o constante o aparecimento de novas espécies.

As espécies dominantes mantiveram-se praticamente as mesmas, com alterações nas participações de cada uma entre as coletas, com destaque para *Astyanax fasciatus*, que contribuiu com as maiores capturas para o mês de março e principalmente em junho e setembro de 2016 (Tabela 2, Tabela 3 e Figura 15), além da pequena participação dos Siluriformes na terceira e quarta coletas. Tais padrões obtidos, muito provavelmente estão relacionados com a própria biologia das espécies capturadas e seus movimentos ao longo dos gradientes espaciais e sazonais na área de estudo. Especialmente pela variação das condições hidrológicas, onde a elevada vazão da água em junho de 2016 pode ter resultado na diminuição da representatividade dos Siluriformes, bem como, na alternância das populações de *A. altiparanae* e *A. fasciatus*.

Por outro lado, na quinta coleta (dez/2016), em virtude do baixo nível dos rios, houve uma maior participação dos Siluriformes, especialmente da família Loricaridae, representada pelos cascudos, e uma pequena abundância dos Characidae (gênero Astyanax) em comparação as demais amostragens. De um modo geral, os *Astyanax* apresentam baixa tolerância a estas condições ambientais e muito provavelmente tenham se deslocado para áreas mais profundas, o que explica, por exemplo, a ausência destes organismos no ponto 4, que em dezembro de 2015, quando o rio apresentava um maior nível de água, foram as espécies dominantes nas amostragens.

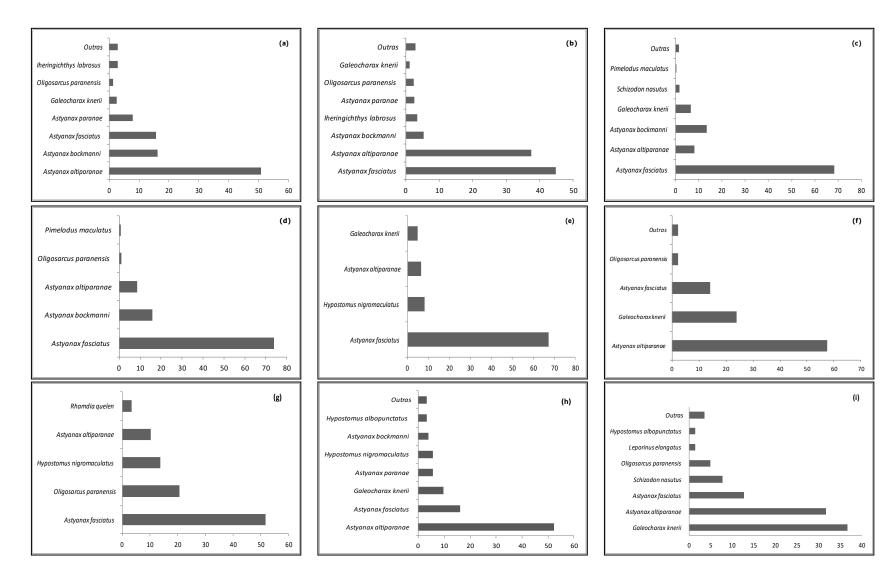
Nas amostragens de fevereiro de 2017, novamente ocorreram mudanças na assembleia de peixes da PCH Presidente Vargas, com *A. altiparanae* voltando a contribuir com as maiores abundâncias, a exemplo do observado em dezembro de 2015 (Figura 15). Contudo, para este mês de amostragem, em que o rio apresentava-se novamente com baixo volume de água, houve uma elevada participação das espécies carnívoras, com a Saicanga, *Galeocharax knerii* ocupando a segunda posição em abundância, com 23,88% do total de peixes capturados e *Oligosarcus paranensis* contribuindo com a quarta colocação entre os peixes mais abundantes (Figura 15). Tais resultados corroboram a importância da vazão do rio na estruturação da comunidade de peixes locais, em conjunto com as relações de interação

entre as espécies, neste exemplo, muito provavelmente vinculadas à alimentação/predação exercida pelas carnívoras.

Em abril de 2017, não foram capturados exemplares em virtude das atividades de manutenção da PCH Presidente Vargas, que deixaram o canal de fuga completamente sem água, ao passo que nas campanhas de julho de 2017, com o retorno do nível de água aos canais (meses anteriores), foi observado um repovoamento da ictiofauna da PCH, com *A. fasciatus* contribuindo com as maiores abundâncias registradas (Figura 15). Também é interessante ressaltar a elevada contribuição das espécies carnívoras, como *Oligosarcus* paranensis, a exemplo do observado em fevereiro deste ano.

Em outubro de 2017, o monitoramento do processo sucessional, pós-impacto das manutenções de abril, demonstra uma tendência de retorno da comunidade íctica às composições específicas observadas no início das coletas, com *A. altiparanae* novamente se caracterizando como espécie chave, sobressaindo em abundância sobre as demais espécies (Figura 15). Contudo, destaca-se que ainda foi capturado um menor número de indivíduos e espécies em relação a dezembro de 2015, bem como, é importante mencionar a elevada contribuição de cascudos do gênero Hypostomus. Tais padrões estão de acordo com o esperado dentro do processo de sucessão ecológica, com pequenas readequações da comunidade perante o cenário atual.

Em janeiro de 2018 novamente observou-se uma elevada contribuição das espécies carnívoras, seguindo o padrão verificado no início do repovoamento região (Tabela 2, Tabela 3, e Figura 15). Para este mês de amostragem, a saicanga *Galeocharax knerii* foi a espécie mais representativa em número de exemplares, inclusive superando *A. altiparanae* que ocupou a segunda posição em abundância, com 31,69% dos peixes capturados, seguida de *Astyanax fasciatus* (12,68%), *Schizodon nasutus* (7,75%), *Oligosarcus paranensis* (4,93%), *Leporinus elongatus* e *Hypostomus albopunctatus*, ambos com 1,41% do total capturado em número região (Tabela 2, Tabela 3 e Figura 15).


Na campanha de abril de 2018 foi observada a presença de uma nova espécie na assembleia de peixes da PCH Presidente Vargas, sendo esta a tabarana *Salminus hilarii* (Valenciennes, 1849), que por ser uma espécie migradora, encontra-se quase ameaçada de extinção (NT), no Estado do Paraná. *A. altiparanae* se manteve como dominante nas amostragens, seguida de *Galeocharax knerii e Astyanax fasciatus*, mantendo-se o padrão observado nas coletas anteriores região (Tabela 2, Tabela 3 e Figura 15).

Para a amostragem de agosto de 2018, *Astyanax fasciatus* voltou a figurar como espécie dominante na assembleia de peixes da PCH, seguida por *A. altiparanae*, *G. knerii* e A. *bockmanni*, a exemplo do observado nos períodos iniciais de monitoramento, em que principalmente a vazão natural do rio determinava as mudanças na estrutura da comunidade de peixes (Tabela 2, Tabela 3 e Figura 15). Destaca-se que para este mês de coleta, o nível do reservatório encontrava-se baixo, devido ao pequeno volume de chuvas para a estação do ano. Dentre os exemplares de *Astyanax fasciatus* amostrados neste período, 26 (cerca 25% do total amostrado para a espécie) apresentavam gônadas maturas, especialmente nos pontos amostrais 1, 2 e 4, corroborando a hipótese levantada de que o ponto 3 realmente parece não constituir um ambiente adequado a reprodução da espécie.

Na campanha, realizada em outubro de 2018, *Astyanax fasciatus* manteve-se como dominante, (ainda com uma grande quantidade de exemplares com gônadas maturas), com a saicanga *G. knerii* ocupando a segunda posição em abundância, seguida de A. *bockmanni, Schizodon nasutus, Leporinus elongatus e Leporinus obtusidens* (Tabela 2, Tabela 3 e Figura 15). Em de janeiro de 2019, *A. altiparanae* novamente figurou como a espécie dominante nas amostragens, seguido da carnívora *Galeocharax knerii* e de *Astyanax fasciatus*, a exemplo do observado em períodos anteriores, fortalecendo a presença de padrões determinados principalmente pelo regime hídrico da região (Tabela 2, Tabela 3, Tabela 4 e Figura 15).

Em abril de 2019 foi capturado um pequeno número de exemplares nas amostragens (17 indivíduos), muito provavelmente associado à baixa vazão do rio, onde predominaram as saicangas *Galeocharax knerii*, seguido *Astyanax altiparanae* e *Pimelodus maculatus*. Nas coletas de julho e setembro de 2019, *Astyanax fasciatus*, voltaram a ser dominantes ao longo da PCH Presidente Vargas, seguidas de *Astyanax altiparanae* e *G. knerii*. Destaca-se na 16ª amostragem a presença de uma espécie que ainda não havia sido amostrada nos anos anteriores, sendo esta a bocarra *Acestrorhynchus lacustris* (Lütken, 1875) (Tabela 2, Tabela 3, Tabela 4 e Figura 15).

Em fevereiro de 2020, a saicanga, *G. knerii* novamente foi dominante nas amostragens, seguida por *A. fasciatus e A. altiparanae* (Tabela 2, Tabela 3, Tabela 4 e Figura 15).

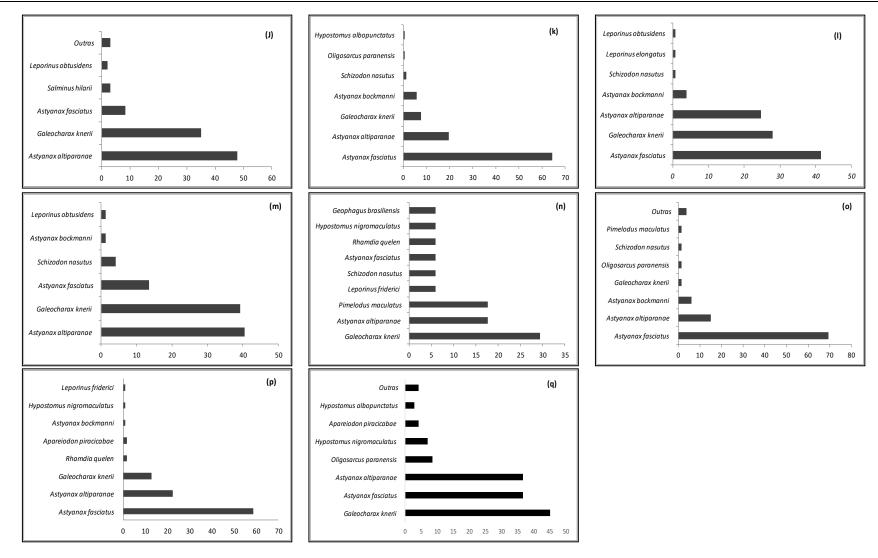


Figura 15. Contribuição percentual em número de indivíduos para as principais espécies de peixes, capturadas nas áreas a montante e a jusante da PCH Presidente Vargas, nas amostragens de dezembro de 2015 (a), março (b), junho (c) setembro (d) e dezembro (e) de 2016; fevereiro (f), julho (g) e outubro de 2017 (h); janeiro (i), abril (j), agosto (k) e outubro (l) de 2018; janeiro (m), abril (n), julho (o) e setembro (p) de 2019; e fevereiro (q) de 2020.

Quanto ao número de organismos capturados, bem como, em relação à riqueza e a diversidade, as amostragens de dezembro de 2015 apresentaram valores médios superiores as demais, muito provavelmente relacionados à vazão do rio Tibagi (Figura 16).

Nas coletas de março de 2016, os pontos de amostragem encontravam-se com um nível de água significativamente mais baixo que o observado em dezembro de 2015, o que pode ter ocasionado na movimentação dos peixes para locais com maior vazão. A baixa representatividade de indivíduos no ponto 4 (mar/2016) corrobora esta hipótese, uma vez que este foi o ponto com menor número de indivíduos coletados, e que em dezembro de 2015 apresentava as maiores abundâncias de organismos, por apresentar águas mais calmas e rodeadas por vegetação ciliar bem preservada (Tabela 2, Tabela 3 e Figura 16).

Por outro lado, os rendimentos ainda mais baixos obtidos em junho e setembro de 2016 podem estar vinculados a uma elevada vazão nesta porção média do rio Tibagi, resultante da abertura de comportas das barragens que drenam para esta localidade, provocando um deslocamento das populações de peixes ainda mais acentuado que o observado em março deste ano, resultando em mudanças na composição e estrutura da comunidade, com redução na abundância, na riqueza e na diversidade de peixes (Tabela 2,Tabela 3 e Figura 16). Tais resultados corroboram a importância das condições hidrológicas locais (vazão do rio) na estruturação da comunidade de peixes da Pequena Central Hidrelétrica PCH Presidente Vargas. Além disto, é de comum consenso que amostragens nos meses de primavera (dez/15) e verão (mar/16), geralmente apresentem maiores abundâncias de organismos, associados com maior temperatura da água, maior disponibilidade de alimento, bem como, a ocorrência de eventos reprodutivos e de recrutamento.

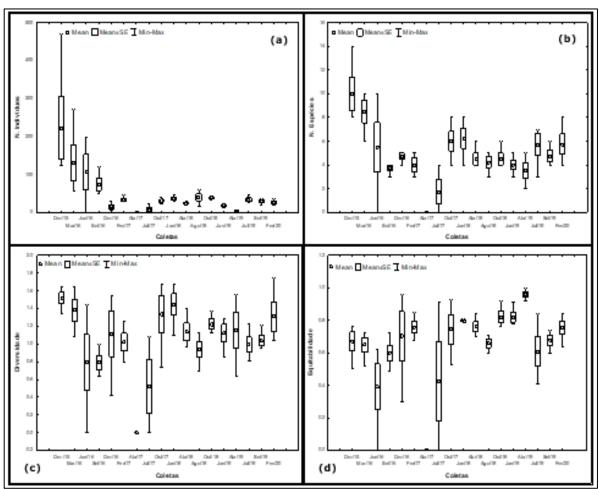


Figura 16. Variação média do número de indivíduos (a), número de espécies de peixes (b), diversidade (c) e equitabilidade (d), nas áreas a montante e a jusante da PCH Presidente Vargas, nas 18 campanhas realizadas. O retângulo central indica a média e a caixa representa a variação do erro padrão em torno da média.

Na sexta campanha amostral (fev/2017), embora a captura em número de indivíduos, tenha se apresentado baixa, se comparada ao mesmo período de 2016 (mar/2016), observa-se um incremento na abundância de peixes, bem como, nos índices de diversidade e equitabilidade aos apresentados no final do ano de 2016 (dez/2016), em que o rio apresentava-se com as menores profundidades observadas durante o presente monitoramento. Tal configuração muito provavelmente tenha resultado em um grande deslocamento de peixes para áreas adjacentes e um possível retorno (com modificações na estrutura e composição da comunidade, citadas anteriormente) em fevereiro de 2017.

Como comentado anteriormente, na sétima campanha amostral não foram capturados exemplares ao longo dos pontos amostrais, em virtude da atividade de manutenção da PCH Presidente Vargas, que deixou o canal de fuga completamente sem água. Durante este período de manutenção foi realizado o resgate das espécies de peixes ao longo do canal de

fuga, bem como, no reservatório da PCH. Etapa esta que foi desenvolvida pela equipe de resgate de fauna da Usina Mauá.

Com o término da manutenção da PCH e retorno dos níveis de água do reservatório e canal de fuga, nos meses seguintes, foi observado um repovoamento da ictiofauna (campanha oito), entretanto, as abundâncias, bem como, o número de espécies, riqueza e diversidade foram significativamente mais baixos se comparado com os períodos iniciais de monitoramento (dezembro de 2015 a setembro de 2016), o que de certo modo era esperado, perante o "impacto" sofrido pela comunidade. Contudo há de se destacar que nos pontos amostrais 3 e especialmente no ponto 4 (comumente caracterizado por apresentar elevados rendimentos em captura e número de espécies), as redes de espera foram furtadas em dois dos três dias de amostragem, o que muito provavelmente tenha contribuído para este baixo rendimento.

Em outubro de 2017, como comentado anteriormente quando abordado a composição de espécies, verifica-se uma tendência de recuperação da comunidade de peixes da PCH, especialmente para o número de indivíduos, a riqueza e a diversidade de espécies, os quais se mantiveram constantes para as amostragens de janeiro de 2018, seguido de leve diminuição em abril de 2018 e pequenos incrementos e oscilações em agosto e outubro de 2018 (Figura 16a e Figura 16b). De um modo geral, as maiores variações nestes períodos ocorreram para o índice de diversidade, muito possivelmente associado ao baixo volume das águas, onde um pequeno número de espécies se manteve ainda no ambiente. Destaca-se na 11a coleta, a presença da tabarana *Salminus hilarii*, que até o presente momento ainda não havia sido registrada na localidade.

Em janeiro e principalmente em abril de 2019, em virtude da manutenção do baixo nível do rio foram observados pequenos rendimentos em número de exemplares capturados, com apenas 17 indivíduos coletados em abril de 2019. Contudo apesar desta baixa abundância e riqueza de espécies, as diversidades e equitabilidades apresentaram um aumento, pois não houve dominâncias significativas de uma espécie sobre as outras, ou seja, foram poucos os exemplares que ainda conseguiram se manter no ambiente com a pequena lâmina de água disponível para eles. Em julho de 2019, observou-se um aumento no número de indivíduos capturados, bem como, no número de espécies, com destaque para a presença da bocarra *Acestrorhynchus lacustris* (Lütken, 1875) (Figura 11a). As coletas de setembro de 2019 e fevereiro de 2020 mantiveram a tendência de julho, com pequenos incrementos nos índices de diversidade e equitabilidade da comunidade.

Na Tabela 5 estão descritas as capturas por petrecho amostral, onde para as 18 campanhas realizadas, pôde-se observar que de um modo geral, a rede de espera com malha de 3,0 cm entre nós opostos contribuiu com as maiores capturas em número de espécies e abundâncias de exemplares, ao passo que o kicknet e os covos resultaram nas menores capturas, sendo que no kicknet não foi capturado nenhum exemplar.

Contudo, apesar das menores contribuições dos outros métodos, foram capturados exemplares que não seriam selecionados pelas redes de malha 3,0 cm, como o mandi *Pimelodus microstoma* (Steindachner, 1877), amostrados com a tarrafa/malha 8,0cm e o cascudo-chinelo *Loricaria prolixa* (Isbrücker & Nijssen, 1978), com a malha de 8,0 cm (Tabela 5). Estes resultados demonstram a importância da diversificação dos métodos amostrais na caracterização da biodiversidade de peixes nas áreas a montante e a jusante da PCH Presidente Vargas.

Tabela 5. Relação das espécies de peixes e suas respectivas frequências em número, por petrecho amostral, nas áreas a montante e a jusante da PCH Presidente Vargas, durante as 18 campanhas realizadas.

TAVA	T	C	Ki alaa ah		Malha			
TAXA	Tarrafa	Covo	Kicknet	3,0cm	8,0cm	12,0cm		
Ordem Characiformes								
Família Parodontidae								
Apareiodon piracicabae				8				
Família Erythrinidae								
Hoplias malabaricus					3	1		
Família Anostomidae								
Leporinus elongatus				4	3			
Leporinus friderici				3	2	3		
Leporinus obtusidens				13				
Schizodon nasutus				13	17			
Família Characidae								
Astyanax altiparanae	37	1		1079	4			
Astyanax bockmanni	13			295				
Astyanax fasciatus	44			1321				
Astyanax paranae				91				
Brycon nattereri					1			
Galeocharax knerii	1			239	86			
Oligosarcus paranensis	2			53				
Acestrorhynchus lacustris				1				
Subfamília Salmininae								
Salminus hilarii				3				

TAVA	T	0	16' al a b	Malha					
TAXA	Tarrafa	Covo	Kicknet	3,0cm	8,0cm	12,0cm			
Ordem Siluriformes									
Família Heptapteridae									
Rhamdia quelen		1		3	4				
Família Pimelodidae									
Iheringichthys labrosus	26			16	3				
Pimelodus maculatus	2			10	10				
Pimelodus microstoma	2				1				
Família Loricariidae									
Hypostomus albopunctatus				5	5	1			
Hypostomus nigromaculatus				3	27	2			
Hypostomus sp.				1					
Loricaria prolixa					1				
Ordem Gymnotiformes									
Família Sternopygidae									
Eigenmannia virescens				1					
Ordem Perciformes									
Família Cichlidae									
Geophagus brasiliensis	2			2	1				
Número de Indivíduos	129	2	0	3164	168	7			
Total de Espécies	9	2	0	21	15	4			
Riqueza	1,64	1,44	-	2,48	2,73	1,54			
Diversidade	1,57	0,69	-	1,48	1,7	1,27			
Equitabilidade	0,71	1	-	0,48	0,63	0,92			

A Tabela 6 apresenta uma síntese dos dados biométricos das espécies de peixes capturadas nas 18 campanhas do presente estudo, onde os menores comprimentos e pesos foram observados para o cará, *Geophagus brasiliensis* (Quoy & Gaimard, 1824), enquanto que os maiores valores ocorreram para o piau-três-pintas, *Leporinus friderici* (Bloch, 1794).

De acordo com a classificação de Vazzoler (1996), utilizada nos trabalhos de Shibatta *et al.*(2002), a qual determina que peixes com comprimentos inferiores a 200 mm podem ser considerados como peixes de pequeno porte; entre 200 e 400 mm, peixes de médio porte; e comprimentos superiores a 400 mm, peixes de grande porte; a grande maioria das espécies coletadas no presente estudo (Tabela 6) pode ser considerada como de pequeno porte. Tais resultados corroboram a afirmação de Castro (1999), de que a ictiofauna de riachos sul-americanos é composta predominantemente por indivíduos de pequeno porte.

Os exemplares de médio porte foram representados pelas espécies, *Hoplias malabaricus, Leporinus elongatus, Schizodon nasutus, Galeocharax knerii, Acestrorhynchus lacustris, Salminus hilarii, Rhamdia quelen, Iheringichthys labrosus, Hypostomus nigromaculatus, Hypostomus albopunctatus e Loricaria prolixa,* enquanto que *Leporinus friderici* (Bloch, 1794), *Brycon nattereri* e *Pimelodus maculatus* apresentaram indivíduos de grande porte, nas 16 campanhas realizadas até o momento (Tabela 6).

A Figura 17 apresenta as distribuições de frequência por classe de comprimento para *A. altiparanae*, espécie dominante em dezembro de 2015, onde se iniciaram as atividades de amostragem para o presente programa de monitoramento da Ictiofauna da PCH Presidente Vargas, bem como, nas últimas amostragens. A amplitude de variação do comprimento total foi de 6,5 a 14,5 cm, com picos de captura nas classes de 9,0, 10,0 e 11,0cm, com diferenças pontuais entre as áreas analisadas.

No ponto amostral 3, caracterizado por apresentar um sistema com corredeiras e maiores velocidades de corrente, a análise das distribuições de frequência por classe de comprimento, demonstra uma pequena participação de indivíduos nas classes inferiores, se comparado com as demais áreas, bem como, uma menor contribuição das classes de maior tamanho, estando ausentes indivíduos com comprimentos superiores a 13,0 cm (Figura 17). Estes dados muito provavelmente demonstram que o ponto 3 não seja uma área de recrutamento e reprodução para *A. altiparanae*, podendo representar apenas um trecho de alimentação ou passagem, a qual os indivíduos adultos conseguem explorar, a exemplo do observado no trabalho de Orsi *et al.* (2004) para o médio rio Paranapanema.

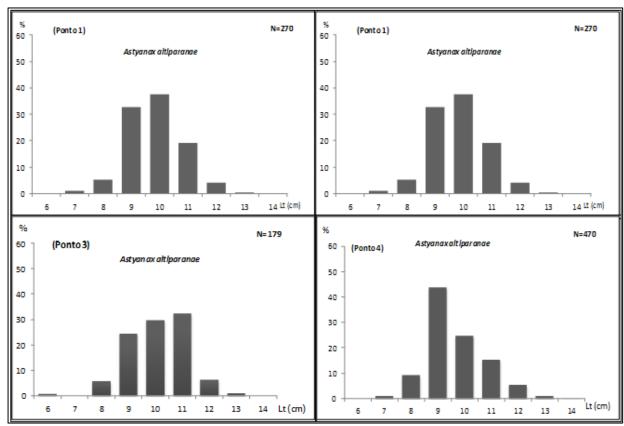


Figura 17. Distribuição de frequência por classe de comprimento para *Astyanax altiparanae*, nos pontos amostrais a montante (#3 e #4) e a jusante (#1 e #2) da PCH Presidente Vargas, nas 18 campanhas realizadas.

Os dados de abundância da espécie ao longo dos trechos amostrados (Figura 18) corroboram a afirmação de que o ponto 3 não constitui um ambiente favorável ao desenvolvimento da população de *A. altiparanae*, sendo observadas as menores abundâncias em relação aos demais pontos de amostragem. Tais padrões estão de acordo com o observado por Bennemann *et al.* (1995) e Shibatta *et al.* (2002), os quais verificaram baixas frequências destas espécies em trechos de correnteza acentuada do médio e alto rio Tibagi. A espécie apesar da elevada capacidade adaptativa, não se desenvolve plenamente em trechos mais caudalosos. Por outro lado, o ponto amostral 4, caracterizado por apresentar águas mais calmas e margeadas por vegetação ciliar bem preservada, muito possivelmente abriga diversas etapas do ciclo de vida de *A. altiparanae*. Neste ponto foi observada uma maior abundância de organismos (Figura 18a), bem como, uma maior diversidade de classes de comprimento (Figura 17), desde indivíduos juvenis a adultos de maior porte, em relação às demais áreas. Ou seja, a área onde está localizado o ponto 4 pode estar funcionando como local de alimentação, refúgio e reprodução para a espécie.

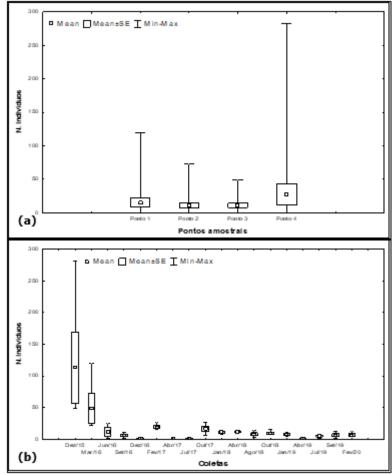


Figura 18. Variação média do número de indivíduos de *Astyanax altiparanae*, por ponto amostral (a) e ao longo do gradiente temporal de amostragem (b). O retângulo central indica a média e a caixa representa a variação do erro padrão em torno da média.

Como comentado anteriormente, a análise temporal da abundância de *A. altiparanae*, revelou uma diminuição na captura da espécie ao longo do período de coleta, com as maiores contribuições em dezembro de 2015, e as menores em junho e setembro de 2016. Os dados, muito possivelmente estão relacionados com a elevada vazão do rio, uma vez que a espécie não se desenvolve plenamente em ambientes muito caudalosos, sendo então gradativamente substituída por *Astyanax fasciatus* (Figura 18b). Por outro lado, as pequenas participações nas amostragens de dezembro de 2016, muito provavelmente estejam relacionadas ao volume de água muito baixo nos pontos amostrais, provocando o deslocamento da espécie para áreas mais profundas.

Em fevereiro de 2017 observa-se uma recuperação gradativa na abundância da espécie, passando a figurar novamente como a dominante nas amostragens, porém inferior ao mesmo período de 2016. Em abril de 2017, devido ao nível do rio ter ficado completamente

sem água, em virtude das atividades de manutenção da PCH, não foi capturado nenhum exemplar de *A. altiparanae*, ao passo que em julho de 2017 foram capturados apenas três exemplares da espécie. Em Outubro de 2017, voltou a contribuir com as maiores abundâncias, com 65 indivíduos capturados, enquanto que em janeiro e abril de 2018, 45 exemplares estiveram presentes nas amostragens (Figura 18b).

Na campanha de agosto de 2018, foi a segunda espécie mais abundante (31 indivíduos), sendo substituída por *A. fasciatus*, enquanto em outubro deste ano, foi a terceira em abundância, sendo substituída por *G. knerii*. Em janeiro de 2019 foi novamente dominante ao longo dos pontos amostrais da PCH Presidente Vargas, enquanto em abril de 2019, apenas três espécimes de *A. altiparanae* foram capturados, sendo novamente superada em abundância por *G. knerii*, a qual participou com cinco indivíduos, sendo a espécie numericamente mais abundante para este mês. Para os meses de julho e setembro de 2019, bem como em fevereiro de 2020, *A. altiparanae* foi a segunda espécie mais representativa, contribuindo com 20, 26 e 26 exemplares respectivamente.

Para *A. fasciatus*, a amplitude de variação do comprimento total foi de 7,5 a 16,0 cm, com as maiores capturas ocorrendo nas classes de 10,0 e 11,0 cm em todos os pontos amostrais (Figura 20).

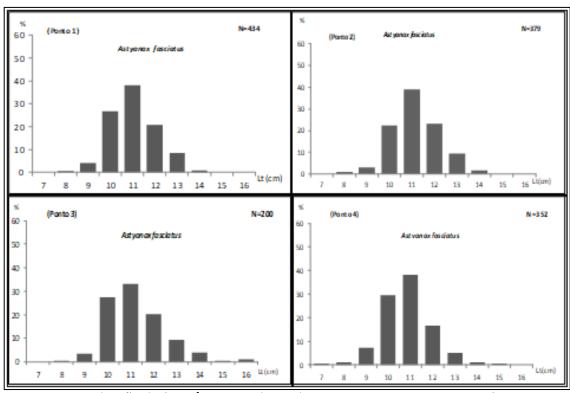


Figura 19. Distribuição de frequência por classe de comprimento para *Astyanax fasciatus*, nos pontos amostrais a montante (#3 e #4) e a jusante (#1 e #2) da PCH Presidente Vargas, nas 18 campanhas realizadas.

Com relação à variação espacial da espécie, as maiores abundâncias ocorreram nos pontos 1 e 4, enquanto que sazonalmente a espécie foi mais abundante em junho de 2016 (Figura 20). Tais resultados muito possivelmente indicam que *A. fasciatus*, em virtude do formato do corpo mais alongado, esteja adaptado a habitar ambientes um pouco mais caudalosos que *A. altiparanae*, resultando na sua dominância na bacia, durante as amostragens de junho e setembro de 2016, em que os trechos apresentavam maiores velocidades de corrente.

Nas amostragens de dezembro de 2016, assim como, o verificado para *A. altiparanae*, foi observado um declínio acentuado na abundância da espécie em virtude do baixo nível de água nos pontos de amostragem. Em fevereiro de 2017, as abundâncias foram ainda mais baixas, muito possivelmente em virtude da manutenção da pequena vazão apresentada pelo rio, em conjunto com uma provável competição com *A. altiparanae* que como comentado, se sobressai em ambientes pouco caudalosos. Assim, como o observado para as demais espécies, as amostragens de abril de 2017 não capturaram nenhum indivíduo, ao passo que em julho de 2017, com o retorno do nível de água aos canais, houve um repovoamento do reservatório da PCH, sendo *A. fasciatus* a espécie dominante nas coletas. Em outubro de 2017, foi substituída por *A. altiparanae*, ocupando a segunda posição em número de exemplares capturados, enquanto em janeiro e abril de 2018, foi a terceira espécie em abundância na baía, sendo superada por *G. knerii* e *A. altiparanae*.

Em agosto e outubro de 2018, novamente se apresentou como a espécie dominante nas coletas, enquanto em janeiro de 2019 ocupou apenas a terceira posição em abundância. No mês de abril de 2019, apenas um indivíduo de *A. fasciatus* foi coletado nas amostragens, enquanto em julho e setembro deste ano, caracterizou-se novamente como a espécie dominante nas coletas. Em fevereiro de 2020, ocupou a segunda colocação nas capturas em conjunto com *A. altiparanae*, com 26 espécimes capturados.

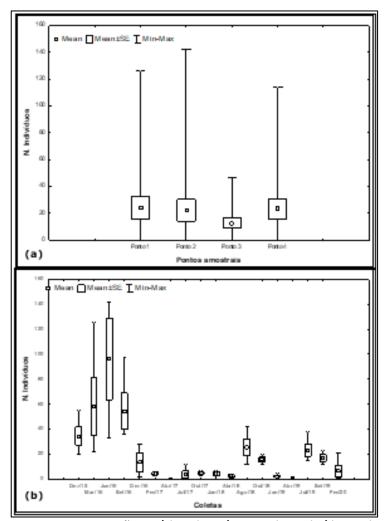


Figura 20. Variação média do número de indivíduos de *Astyanax fasciatus* por ponto amostral (a) e ao longo do gradiente temporal de amostragem (b). O retângulo central indica a média e a caixa representa a variação do erro padrão em torno da média.

Tabela 6. Frequência de ocorrência absoluta (N), Biomassa (g), Comprimento Médio total, Amplitude de Comprimento, Peso Médio total e Amplitude de Peso, das espécies de peixes capturadas nas áreas a montante e a jusante da PCH Presidente Vargas, nas 18 campanhas amostrais.

4. TAXA	5. N	6. Biomassa	7. Larg.	8. Am	p. Larg	9. Peso Médio	10. Amp. Peso		
4. IAXA	5. N	o. Biomassa	Média	<	>	9. Peso Medio	<	>	
Ordem Characiformes									
Família Parodontidae									
Apareiodon piracicabae	8	310,99	14,78 ± 0,94	11,3	18,5	38,87 ± 5,97	18,72	66,52	
Família Erythrinidae									
Hoplias malabaricus	4	4439,5	40,30 ± 3,87	35	51,5	1109,88 ± 295,79	609,51	1949,61	
Família Anostomidae									
Leporinus elongatus	7	778,48	19,93 ± 2,17	11	27,5	111,21 ± 32,04	41,41	245,16	
Leporinus friderici	8	3787,35	35,93 ± 7,15	12	63	473,42± 154,36	17,02	1250,23	
Leporinus obtusidens	13	409,78	14,32 ± 0,61	11	18,1	31,52 ± 3,63	15,7	56,26	
Schizodon nasutus	30	6961,53	25,39 ± 1,32	15	36,5	232,05 ± 33,78	36,08	524,47	
Família Characidae			·						
Astyanax altiparanae	1121	17738,68	10,16 ± 0,03	6,5	14,5	15,82 ± 0,17	7,35	55	
Astyanax bockmanni	308	4557,92	10,01 ± 0,08	7	14,5	14,80 ± 0,41	4,32	53,62	
Astyanax fasciatus	1365	25874,32	11,41 ± 0,03	7,5	16	18,96 ± 0,16	7,05	43,01	
Astyanax paranae	91	1111,95	9,75 ± 0,09	7,5	12	12,22 ± 0,34	8,01	25	
Brycon nattereri	1	436,33		-	-	-	-	-	
Galeocharax knerii	326	26034,28	19,46 ± 0,26	10	32	79,86 ± 4,29	9,55	318,93	
Oligosarcus paranensis	55	1774,15	14,89 ± 0,27	10,6	18,3	32,26 ± 1,73	10,8	57,11	

4. TAXA	5. N	6. Biomassa	7. Larg.	8. Amj	o. Larg	9. Peso Médio	10. Amp. Peso		
4. IAXA	5. N	6. Biomassa	Média	<	>	9. Peso Medio	<	>	
Acestrorhynchus lacustris	1	51,12	1	-	-	-	-	-	
Família Salmininae									
Salminus hilarii	3	161,61	18,33 ± 0,60	17,5	19,5	53,87 ± 5,19	43,74	60,89	
Ordem Siluriformes									
Família Heptapteridae									
Rhamdia quelen	8	2779,92	28,98 ± 3,49	14	41,7	347,49 ± 100,66	20,03	832,48	
Família Pimelodidae									
Iheringichthys labrosus	45	1157,49	15,16 ± 0,41	10,6	23	25,72 ± 2,19	7,33	70,72	
Pimelodus maculatus	22	4181,72	24,79 ± 1,91	12,8	45	190,08 ± 43,02	22.71	735,62	
Pimelodus microstoma	3	407,39	129,10 ± 6,71	11,8	13,5	135,80 ± 118,62	15,39	373,03	
Família Loricariidae									
Hypostomus albopunctatus	11	1571,95	21,19 ± 2,09	13,2	33	142,90 ± 39,75	24,69	401,63	
Hypostomus nigromaculatus	32	7121,61	27,60 ± 0,91	11,2	34,5	222,55 ± 15,64	14,2	402,37	
Hypostomus sp.	1	13,72		-	-	-	-	-	
Loricaria prolixa	1	210,24	-	-	-	-	ı	-	
Ordem Gymnotiformes									
Família Sternopygidae									
Eigenmannia virescens	1	18,11	-	-	-	-	-	-	
Ordem Perciformes									
Família Cichlidae									
Geophagus brasiliensis	5	247,88	11,78 ± 2,75	7	22,5	49,57 ± 36,33	5,41	194,61	

Através da análise de cluster aos dados de abundância da ictiofauna, ao longo das 18 amostragens do presente monitoramento, foi possível separar a comunidade de peixes da PCH Presidente Vargas, em três grandes grupos (Figura 21). No grupo I, encontram-se agrupadas as espécies de maior representatividade numérica no presente estudo, composto pelas espécies dominantes e chaves na estruturação da comunidade ictiofaunística, *Astyanax altiparanae e Astyanax fasciatus*, em conjunto com *Astyanax bockmanni* e a Saicanga *Galeocharax knerii*. No grupo II, estiveram presentes as espécies com abundâncias intermediárias, sendo representado por *Schizodon nasutus*, *Hypostomus nigromaculatus*, *Astyanax paranae*, *Oligosarcus paranensis* e *Iheringichthys labrosus* (Figura 21).

O grupo III foi formado pelas espécies menos frequentes e com baixa expressividade numérica, compreendendo: *Apareiodon piracicabae, Leporinus friderici, Rhamdia quelen, Hypostomus albopunctatus, Leporinus obtusidens, Pimelodus maculatus, Hoplias malabaricus, Geophagus brasiliensis, Pimelodus microstoma e Leporinus elongatus, além de Brycon nattereri, Acestrorhynchus lacustris, Salminus hilarii, Hypostomus sp., Loricaria prolixa e Eigenmannia virescens* (Figura 21). Tais resultados reforçam a existência de relações interespecíficas de competição e segregação de nichos na composição da comunidade de peixes da PCH Presidente Vargas apresentada e amplamente discutida no presente estudo.

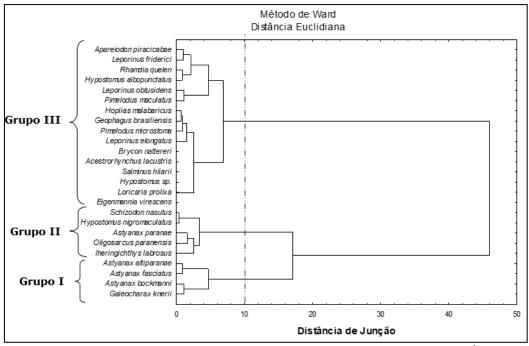


Figura 21. Dendrograma de agrupamento, com base nos dados de abundância das espécies de peixes capturadas nos pontos amostrais a montante (#3 e #4) e a jusante (#1 e #2) da PCH Presidente Vargas, ao longo das 18 amostragens.

Por fim, durante as 18 amostragens para o Programa de Monitoramento da Ictiofauna da PCH Presidente Vargas foi observada a presença da espécie *Brycon nattereri* (Günther, 1864), que se encontra listada como VU (vulnerável) na Lista das Espécies da Fauna Brasileira Ameaçadas de Extinção (MMA, 2008), Lista das Espécies da Fauna Ameaçadas de Extinção no Paraná (CURITIBA, 2006) e nas Instruções Normativas MMA Nº 5/2004/2005 e IN MMA Nº 445 de 17 de dezembro de 2014 (Tabela 7).

Esta espécie já havia sido relatada para a região, nos trabalhos de Shibatta *et al.* (2002), Langeani *et al.* (2007) e Shibatta *et al.* (2007), indicando que apesar dos impactos sofridos ao longo dos trechos do rio Tibagi, algumas áreas ainda se encontram relativamente preservadas. Como no caso do presente estudo, o ponto amostral 4, margeado por uma vegetação ciliar bem preservada, onde foi registrada a presença de *B. nattereri*.

Na 11ª campanha amostral foi registrada a ocorrência da tabarana *Salminus hilarii*, a qual se encontra classificada como quase ameaçada (NT) na lista de Espécies de peixes ameaçadas do Paraná (CURITIBA, 2006).

Tabela 7. Nomenclatura científica e vulgar e status de conservação das espécies capturadas no presente estudo, para o Programa de Monitoramento Ambiental da Ictiofauna da PCH Presidente Vargas.

	Nome		Status de Conservação						
TAXA	Vulgar	CURITIBA 2006	MMA (2008)	MMA (2014)	IUCN (2016)	Exótica			
Ordem Characiformes									
Família Parodontidae									
Apareiodon piracicabae (Eigenmann, 1907)	canivete	NC	NC	NC	NC	NÃO			
Família Erythrinidae									
Hoplias malabaricus (Bloch, 1794)	traíra	NC	NC	NC	NC	NÃO			
Família Anostomidae									
Leporinus elongatus Valenciennes, 1849	piapara	NC	NC	NC	NC	NÃO			
Leporinus friderici (Bloch, 1794)	piau 3 pintas	NC	NC	NC	NC	NÃO			
Leporinus obtusidens (Valenciennes, 1847)	piau	NC	NC	NC	LC	NÃO			
Schizodon nasutus Kner, 1859	chimboré	NC	NC	NC	NC	NC			
Família Characidae									
Astyanax altiparanae Garutti & Britski, 2000	lambari-de- rabo- amarelo	NC	NC	NC	NC	NÃO			
Astyanax bockmanni Vari & Castro, 2007	lambari	NC	NC	NC	NC	NÃO			
Astyanax fasciatus (Cuvier, 1819)	lambari-de- rabo- vermelho	NC	NC	NC	NC	NÃO			
Astyanax paranae Eigenmann, 1914	lambari	NC	NC	NC	NC	NÃO			
Brycon nattereri Günther, 1864	pirapitinga	VU	VU	VU	NC	NÃO			

	Nome		Status	Status de Conservação						
TAXA	Vulgar	CURITIBA 2006	MMA (2008)	MMA (2014)	IUCN (2016)	Exótica				
Galeocharax knerii (Steindachner, 1879)	saicanga	NC	NC	NC	NC	NÃO				
Oligosarcus paranensis Menezes & Géry, 1983	saicanga	NC	NC	NC	NC	NÃO				
Acestrorhynchus lacustris (Lütken, 1875)	bocarra	NC	NC	NC	NC	NÃO				
Subfamília Salmininae										
Salminus hilarii (Valenciennes, 1849)	tabarana	NT	NC	NC	NC	NÃO				
Ordem Siluriformes										
Família Heptapteridae										
Rhamdia quelen (Quoy & Gaimard, 1824)	bagre, jundiá	NC	NC	NC	NC	NÃO				
Família Pimelodidae										
Iheringichthys labrosus (Kröyer, 1874)	mandi- beiçudo	NC	NC	NC	NC	NÃO				
Pimelodus maculatus Lacépède, 1803	mandi	NC	NC	NC	NC	NÃO				
Pimelodus microstoma Steindachner, 1877	mandi	NC	NC	NC	NC	NÃO				
Família Loricariidae										
Hypostomus albopunctatus (Regan, 1908)	cascudo	NC	NC	NC	NC	NÃO				
Hypostomus nigromaculatus (Schubart, 1964)	cascudo	NC	NC	NC	NC	NÃO				
Hypostomus sp	cascudo	-	-	-	-	-				
Loricaria prolixa Isbrücker & Nijssen, 1978	cascudo- chinelo	NC	NC	NC	NC	NÃO				
Ordem Gymnotiformes										
Família Sternopygidae										
Eigenmannia virescens (Valenciennes, 1847)	tuvíra/ituí- transparente	NC	NC	NC	NC	NÃO				
Ordem Perciformes										
Família Cichlidae										
Geophagus brasiliensis (Quoy & Gaimard, 1824)	cará/acará	NC	NC	NC	NC	NÃO				

5 CONCLUSÕES

As ordens Characiformes e Siluriformes foram dominantes em número de espécies e abundância de exemplares no presente estudo, onde a predominância de Characidae esteve fundamentada na elevada contribuição das espécies *Astyanax fasciatus* e *Astyanax altiparanae*, possivelmente associada à grande capacidade adaptativa delas.

Além destas, foi observada simpatria entre outras duas espécies do gênero *Astyanax*, (*Astyanax bockmanni* e *Astyanax paranae*) com participações distintas ao longo dos pontos amostrais, o que demonstrou as diferentes formas de ocupação ao longo do gradiente amostral, provavelmente em função das estratégias alimentares e utilização do espaço.

A partir das análises das amplitudes de comprimento, bem como, dos comprimentos médios das espécies capturadas, observou-se que a grande maioria dos exemplares apresentou pequeno porte, o que esteve de acordo com o encontrado ao longo dos sistemas de água doce sul-americanos.

Entre os pontos amostrais analisados, o ponto 4, caracterizado por apresentar águas mais calmas, margeado com uma mata ciliar bem preservada, aparentemente tem apresentado melhores condições para o desenvolvimento da assembleia de peixes local, contribuindo com as maiores abundâncias e diversidades de peixes, com quatro espécies exclusivas deste ambiente.

Dentre as espécies de peixes capturadas, foi observada a presença de *Brycon nattereri* (Günther, 1864), que se encontra listada como VU (vulnerável) na Lista das Espécies da Fauna Brasileira Ameaçadas de Extinção, indicando que alguns trechos do rio Tibagi, como por exemplo, o ponto amostral 4 (onde foi encontrada esta espécie), ainda apresentam-se relativamente preservados.

As principais mudanças na comunidade de peixes no presente estudo estiveram relacionadas à alternância entre a dominância das populações de *A. altiparanae* e *A. fasciatus* ao longo das 18 investidas amostrais. O predomínio foi da primeira (*A. altiparanae*), durante as coletas de dezembro de 2015 e redução na época de seca (março de 2016), bem como, em junho e setembro de 2016, devido às elevadas velocidades de corrente, o que esteve de acordo com a biologia da espécie. Apesar da grande capacidade adaptativa, essa espécie não se desenvolve plenamente em ambientes de elevadas correntezas. Tal diminuição, provavelmente tenha disponibilizado um nicho de espaço para

a ocupação de *A. fasciatus* (possível competidora com *A. altiparanae*, pois geralmente explora os mesmos recursos, bem como, se distribui na mesma faixa da coluna d'água), que apresentou um aumento expressivo na abundância dos exemplares especialmente em junho de 2016.

Considerando a diversidade funcional destas duas espécies, levando em conta a anatomia do corpo, por apresentar um formato fusiforme, *A. fasciatus* caracteriza-se como melhor nadadora do que *A. altiparanae*, que possui o corpo mais alto, o que em caso de competição por espaço, muito provavelmente tenha beneficiado *A. fasciatus*, quando do aumento das velocidades de corrente em junho e setembro de 2016.

Além da alternância entre as populações de *A. fasciatus* e *A. altiparanae*, cabe ressaltar a flutuação dos Siluriformes ao longo do estudo, com destaque para os incrementos observados durante a quinta amostragem (dez/16), onde se observou um aumento na abundância de cascudos da família Loricaridae, muito provavelmente devido ao baixo nível apresentado pelos rios e deslocamento dos Astyanax para regiões mais profundas.

Nas amostragens realizadas em fevereiro de 2017 (sexta campanha) é importante mencionar a elevada participação das espécies carnívoras, com destaque para a Saicanga *Galeocharax knerii*, que foi a segunda espécie mais abundante nas coletas, corroborando a importância das relações interespecíficas, especialmente vinculadas à alimentação/predação exercida pelas carnívoras, na estruturação das assembleias ícticas.

As amostragens de abril de 2017, não capturaram exemplares de peixes ao longo dos pontos amostrais, o que esteve relacionado com as atividades de manutenção da PCH Presidente Vargas, uma vez que o nível do rio se apresentava em alguns pontos, completamente sem água. Com o término da manutenção e restabelecimento do nível de água nos meses subsequentes foi observado um repovoamento da ictiofauna (campanha oito), entretanto, as abundâncias, bem como, o número de espécies, riqueza e diversidade foram significativamente mais baixos se comparado com os períodos iniciais de monitoramento, o que apesar de esperado, (perante o impacto sofrido na comunidade), possa também estar relacionado com o furto das redes de coleta em dois dias seguidos nos pontos amostrais 3 e 4.

Em outubro de 2017, foram observados incrementos significativos no número e na diversidade de espécies ícticas na PCH, o que em conjunto com a análise da composição específica, demonstra uma recuperação da comunidade perante os impactos provenientes

das atividades de manutenção da PCH, conforme supracitado. As coletas de janeiro e abril de 2018 seguiram esta mesma tendência de recuperação, com pequenos incrementos e oscilações nestes dois parâmetros, ao passo que em agosto de 2018, foi observada uma leve diminuição no número de indivíduos e espécies capturadas, muito possivelmente ao baixo volume do rio durante as amostragens, em virtude das estiagens, voltando a apresentar incrementos em outubro de 2018. Em janeiro de 2019, novamente o rio apresentava-se com baixa vazão, resultando em uma pequena abundância de peixes, o que foi igualmente observado em abril deste ano, onde foram capturados apenas 17 exemplares ao longo dos pontos amostrais da PCH Presidente Vargas. Em julho de 2019, foi observado um pequeno aumento, tanto no número de indivíduos capturados, quanto no número de espécies registradas, o qual se manteve constante até fevereiro de 2020, com pequenos incrementos nos índices de diversidade e equitabilidade da comunidade.

De um modo geral, até o presente momento, a comunidade ictiofaunística da Pequena Central Hidrelétrica de Presidente Vargas, parece ser moldada principalmente pela vazão do rio, seja de forma natural (regime de secas e inundações) ou antrópica (abertura das barragens, bem como, atividades de manutenção). Tais flutuações têm contribuído de forma direta no deslocamento das populações de peixes, nas relações interespecíficas e estruturação da comunidade, como demonstrado ao longo deste estudo.

Por fim, a composição específica observada no presente estudo, com 25 espécies levantadas para um trecho local da região média do rio Tibagi, parece se enquadrar no padrão de assembleias locais de peixes, dos sistemas de água doce neotropicais. Contudo, a continuidade das amostragens, provavelmente contribuirá para uma descrição mais aproximada da composição da comunidade de peixes na região de estudo, que segundo pesquisadores renomados da região, ainda precisa ser exaustivamente explorada, pois é comum o aparecimento de novas espécies (corroborado com este estudo/monitoramento, visto a ocorrência da tabarana, *Salminus hilarii*, na 11ª e da bocarra, *Acestrorhynchus lacustris*, na 16ª coleta). Além disto, tais estudiosos são categóricos ao afirmar que para se avaliar e propor medidas de manejo eficazes para os possíveis impactos das atividades do setor elétrico sobre as diferente populações de peixes na bacia, é fundamental que se conheça a distribuição, além dos padrões de utilização dos diferentes ambientes ao longo da bacia, reforçando a importância na continuidade dos estudos na região.

6 REFERÊNCIAS BIBLIOGRÁFICAS

ARAÚJO-LIMA, C. A. R., AGOSTINHO, A. A. & FABRÉ, N. N. 1995. Trophic aspects of fish communities in Brazilian rivers and reservois. *In* TUNDISI, J. G.; BICUDO, C. E. M.; MATSUMURA-TUNDISI, T (Ed). Limnology in Brazil. Rio de Janeiro: ABC/SBL. P 105-136. AZPELICUETA, M. de las. M. & BRITSKI, H. A. 2012. *Iheringichthys syi* (Siluriformes: Pimelodidae), a new pimelodidae species from upper Paraná basin, Brazil. Neotropical Ichthyology, 10(1): 45-52.

BAUMGARTNER, G., PAVANELLI, C. S., BAUMGARTNER, D., BIFI, A. G., DEBONA, T. & FRANA, V. A. 2012. Peixes do baixo rio Iguaçu [online]. Maringá: Eduem, 2012. 203 p. ISBN 978-85-7628-586-1. Available from SciELO Books http://books.scielo.org.

BENNEMANN, S. T., SILVA-SOUZA, A. T. & ROCHA, G. R. A. 1995. Composicion ictiofaunistica en cinco localidades de la cuenca del rio Tibagi PR - Brasil. Interciencia, 20: 7-13.

BENNEMANN, S. T., SHIBATTA, O. A. & GARAVELLO, J. C. 2000. Peixes do rio Tibagi: uma abordagem ecológica. Londrina, Ed UEL. 62p.

BENNEMANN, S. T. & SHIBATTA, O. A. 2002. Dinâmica de uma assembléia de peixes do rio Tibagi. *In:* MEDRI, M. E.; BIANCHINI, E.; SHIBATTA, O. A. & PIMENTA, J. A. Eds. A bacia do rio Tibagi. Londrina, Universidade Estadual de Londrina. p. 433-442.

BENNEMANN, S. T., GEALH, A. M., ORSI, M. L. & SOUZA, L. M. 2005. Ocorrência e ecologia trófica de quatro espécies de *Astyanax* (Characidae) em diferentes rios da bacia do rio Tibagi, Paraná, Brasil. Iheringia, Sér. Zool., Porto Alegre, 95(3): 247-254.

BONETTO, A. A. 1986. The Paraná river system. *In* The ecology of river systems (B.R. Davies & K.F. Walker, eds.). Dr. W. Junk Publishers, Dordrecht, p. 541-555.

BRITO, S. G. C., SIROL, R. N.; VIANNA, N. C., JARDIM, M. S., dos SANTOS, J. C. & PELISARI, E. 2008. Peixes do rio Paranapanema. Editora Horizonte, p. 120.

BRITSKI, H. A. 1972. Peixes de água doce do estado de São Paulo. *In:* Comissão Internacional da Bacia Paraná – Paraguai. Poluição e piscicultura. São Paulo, Faculdade de Saúde Pública da USP e Instituto de Pesca. p.79-108.

BRITSKI, H. A., BIRINDELLI, J. L. O., GARAVELLO, J. C. A new species of *Leporinus agassiz*, 1829 from the upper Rio Paraná basin (Characiformes, Anostomidae) with redescription of *L. elongates* Valenciennes, 1850 and *L. obtusidens* (Valenciennes, 1837). Papéis Avulsos de Zoologia. 52(37): 441-475, 2012.

BUCKUP, P.A., MENEZES, N. A. & GHAZZI, M. S. 2007. Catálogo das espécies de peixes de água doce do Brasil. Rio de Janeiro, Museu Nacional.

CASATTI, L., LANGEANI, F. & CASTRO, R. M. C. 2001. Peixes de riacho do Parque Estadual Morro do Diabo, bacia do Alto Rio Paraná, SP. Biota Neotropica 1: 1-15. CASTRO, R. M. C. 1999. Evolução da ictiofauna de riachos sul-americanos: padrões gerais e possíveis processos causais. In Ecologia de peixes de riachos (E.P. CARAMASCHI, R. MAZZONI & P. R. PERES-NETO, Eds.). Série Oecologia Brasiliensis, PPGE-UFRJ, Rio de Janeiro, p.139-155.

CASTRO, A. C. L. 2001. Diversidade da assembléia de peixes em Igarapés do estuário do rio Paciência (MA – Brasil). Atlântica, Rio Grande, 23: 39-46.

CASTRO, R. M. C., CASATTI, L., SANTOS, H. F., FERREIRA, K. M., RIBEIRO, A.C., BENINE, R. C., DARDIS, G. Z. P., MELO, A. L. A., STOPIGLIA, ABREU, T. X., BOCKMANN, F. A., CARVALHO, M., GIBRAN, F. Z. & LIMA, F. C. T. 2003. Estrutura e composição da ictiofauna de riachos do Rio Paranapanema, sudeste e sul do Brasil. Biota Neotropica 3:1-31.

COX, C. B. & MOORE, P. D. 2000. Biogeography, an ecological and evolutionary approach. Blackwell Science, London.

CURITIBA, 2006. Fauna do Paraná em Extinção. Instituto Ambiental do Paraná, 272p.

DE FRANÇA, V. 2002. O rio Tibagi no contexto hidrográfico parananense. *In* A bacia do rio Tibagi (M.E. Medri, E. Bianchini, O.A. Shibatta & J.A. Pimenta, eds.). M. E. Medri, Londrina, p.45-61.

FERREIRA, E. J. G. 1993. Composição, distribuição e aspectos ecológicos da ictiofauna de um trecho do rio Trombetas, na área de influência da futura UHE Cachoeira Porteira, Estado do Pará, Brasil. Acta Amazonica 23(Supl.1/4): 1-88.

GARAVELLO, J. C.; BRITSKI, H. A. & ZAWADZKI, C. H. 2012. The cascudos of genus *Hypostomus* Lacépéde (Ostariophysi: Loricariidae) from the rio Iguaçu basin. Neotropical Ichthyology, 10(2): 263-283.

HOFFMANN, A. C., ORSI, M. L., SHIBATTA, O. A. 2005. Diversidade de peixes do reservatório da UHE Escola Engenharia Mackenzie (Capivara), rio Paranapanema, bacia do alto rio Paraná, Brasil e a importância dos grandes tributários na sua manutenção. Iheringia, Série Zoologia, Porto Alegre, 95:3 319-325.

HOFFMANN, A. C., NASCIMENTO, R. H. C. & SHIBATTA, O. A. 2015. Fish fauna from tributaries throughout the Tibagi River basin, upper Paraná basin, Brazil. Check List 11(6): 1815, doi: http://dx.doi.org/10.15560/11.6.1815 ISSN 1809-127X ©.

IUCN, 2016. http://www.iucnredlist.org/. Acesso em 20 de janeiro de 2016.

INGENITO, L.F. S., DUBOC, L. F. & ABILHOA, V. 2004. Contribuição ao conhecimento da ictiofaunada bacia do alto rio Iguaçu, Paraná, Brasil. Arquivos de Ciências Veterinárias e Zoologia da UNIPAR, Umuarama,7(1):1 23-36.

LANGEANI, F., CASTRO, R. M. C., OYAKAWA, O. T., SHIBATTA, O. A., PAVANELLI, C. S. & CASATTI, L. 2007. Diversidade da ictiofauna do Alto rio Paraná: composição atual e perspectivas futuras. Biota Neotropica. 7(3): http://www.biotaneotropica.org.br/v7n3/pt/abstract?article+bn03407032007.

LOWE-McCONNELL, R. H. 1999. Estudos ecológicos de comunidades de peixes tropicais. Editora da Universidade de São Paulo, São Paulo, Brasil, 534 p.

LYONS, J., NAVARRO-PÉREZ, S., COCHRAN, P. A., SANTANA, C. & GUZMÁN-ARROYO, M. 1995. Index of biotic integrity based on fish assemblages for the conservation of streams and rivers in west-central México. Cons. Biol. 9(3): 569-584.

MARCENIUK, A. P., HILSDORF, A. W. da SILVA. & LANGEANI, F. 2011. A ictiofauna de

MARCENIUK, A. P., HILSDORF, A. W. da SILVA. & LANGEANI, F. 2011. A ictiofauna de cabeceiras do rio Tietê, São Paulo, Brasil. Biota Neotropica. 11(3): http://www.biotaneotropica.org.br/v11n3/en/abstract?inventory+bn00311032011.

MATTHEWS, W.J. 1998. Patterns in freshwater fish ecology. Thomson Publ. Chapman & Hall, New York.

- NELSON, J. S. 2006. Fishes of the world. John Wiley & Sons, New York.
- ORSI, M. L.; CARVALHO, E. D. & FORESTI, F. 2004. Biologia populacional de *Astyanax altiparanae* Garutti & Britski 2000 (Teleostei, Characidae) do médio rio Paranapanema, Paraná, Brasil. Revista Brasileira de Zoologia 21(2):207-218.
- PELICICE, F. M., AGOSTINHO, A. A. & GOMES, L. C. 2005. Biodiversidade e conservação de peixes na planície de inundação do alto rio Paraná. Caderno de Biodiversidade. 5(1): 34-44.
- PEREIRA, M. C. B. & SCROCCARO, J. S. 2010. Bacias Hidrográficas do Paraná: Série Histórica. SEMA-PARANÁ.
- RAIO, C. B. & BENNEMANN, S. T. 2010. A ictiofauna da bacia do rio Tibagi e o projeto de construção da UHE Mauá, Paraná, Brasil. Semina: Ciências Biológicas da Saúde, Londrina. 31(1): 15-20.
- REIS, R. E., KULLANDER, S. O. & FERRARIS-JR., C. J. 2003. Check list of the freshwater fishes of South and Central America. EDIPUCRS, Porto Alegre.
- RIBEIRO, F.R.V. & LUCENA, C.A.S. 2007. *Pimelodus microstoma* Steindachner, 1977, a valid species of pimelodid catfish (Siluriformes: Pimelodidae) from the upper rio Paraná drainage. Neotropical Ichthyology 5(1):75-78.
- ROSA, R. S. & LIMA, F, C. T. 2008. Os Peixes Brasileiros Ameaçados de Extinção. p. 278. SANT'ANNA, J. F. M., ALMEIDA, M. C., VICARI, M. R., SHIBATTA, O. A. & ARTONI, R. F. 2006. Levantamento rápido de peixes em uma lagoa marginal do rio Imbituva na bacia do alto rio Tibagi, Paraná, Brasil. Biologia e Saúde, Ponta Grossa. 12 (1): 39-46.
- SCHAEFER, S. A. 1998. Conflict and resolution: impact of new taxa on phylogenetic studies of the neotropical cascudinhos (Siluroidei: Loricariidae). In: Malabarba LR, Reis RE, Vari RP, Lucena ZMS, Lucena CAS (ed). Phylogeny and Classification of Neotropical Fishes. Porto Alegre, EDIPUCRS, p: 375-400.
- SHIBATTA, O. A.; ORSI, M. L.; BENNEMANN, S. T. & SILVA-SOUZA, A. 2002. Diversidade e distribuição de peixes na bacia do rio Tibagi. In: MEDRI, M. E.; BIANCHINI, E.; SHIBATTA, O. A. & PIMENTA, J. A. 2002. A bacia do rio Tibagi. Londrina, Universidade Estadual de Londrina. p 403-423.
- SHIBATTA, O. A.; GEALH, A. M. & BENNEMANN, S. T. 2007. Ictiofauna dos trechos alto e médio da bacia do rio Tibagi, Paraná, Brasil. Biota Neotropical. 7(2): 125-134.
- VARI, R. P. & CASTRO, R. M. C. 2007. New Species of *Astyanax* (Ostariophysi: Characiformes: Characidae) from the Upper Rio Paraná System, Brazil. Copeia. (1): 150-162. http://dx.doi.org/10.1643/0045-8511(2007)7[150:NSOAOC]2.0.CO;2.
- VAZZOLER, A. E. A. M. 1996. Biologia de reprodução de peixes teleósteos: teoria e prática. Maringá, SBI/EDUEM, 129p.
- YÁÑEZ-ARANCIBIA, A. 1985 The estuarine nekton: why and how an ecological monograph. Preface. In: Yáñez-Arancibia, A. Fish community ecology in estuaries and coastal lagoons: towards an ecosystem integration. Mexico: UNAM, p. 1-8.

Klabin Celulose S.A.

Monitoramento da Ictiofauna da Pequena Central Hidrelétrica Presidente Vargas, Município de Telêmaco Borba, Paraná.

SUMÁRIO

1.	EQUIPE TÉCNICA	1-6
2.	INTRODUÇÃO	2-7
3.	MATERIAIS E MÉTODOS	3-8
3.1	Área de estudo	3-8
3.2	Trabalho de Campo	3-10
3.2	Trabalho de Laboratório	3-14
3.3	Análise dos dados	3-15
4	RESULTADOS E DISCUSSÃO	3-16
5	CONCLUSÕES	3-51
6	REFERÊNCIAS BIBLIOGRÁFICAS	3-54

LISTA DE FIGURAS

Figura 1. Localização da PCH Presidente Vargas, em relação ao rio Tibagi e as cidades de
Ortigueira e Telêmaco Borba
Figura 2. Localização dos pontos de coleta da ictiofauna do rio Tibagi - Programa de
Monitoramento da Ictiofauna da PCH Presidente Vagas
Figura 3. Caracterização fotográfica dos pontos de coleta da ictiofauna do rio Tibagi -
Programa de Monitoramento da Ictiofauna da PCH Presidente Vagas (a) $\#1$, (b) $\#2$, (c) $\#3$
e (d) #4
Figura 4. Demonstração das amostragens com redes de espera para coleta da ictiofauna,
no rio Tibagi (a, b) e a despesca feita pela equipe de pesquisadores (c e d) 3-13
Figura 5. Demonstração das amostragens com tarrafa para coleta da ictiofauna, no rio
Tibagi
Figura 6. Demonstração das amostragens com covos para coleta da ictiofauna, no rio
Tibagi
Figura 7. Demonstração das amostragens com Kicknet para coleta da ictiofauna, no rio
Tibagi
Figura 8. Registro fotográfico dos exemplares capturados: (a) Apareiodon piracicabae; (b)
Hoplias malabaricus; (c) Leporinus elongatus; (d) Leporinus friderici; (e) Leporinus
obtusidens; (f) Schizodon nasutus; (g) Brycon nattereri; (h) Astyanax altiparanae 3-23
Figura 9. Registro fotográfico dos exemplares capturados: (a) Astyanax bockmanni; (b)
Astyanax fasciatus; (c) Astyanax paranae; (d) Galeocharax knerii; (e) Oligosarcus
paranensis; (f) Rhamdia quelen; (g) Iheringichthys labrosus e (h) Pimelodus maculatus.
Figura 10. Registro fotográfico dos exemplares capturados: (a) Pimelodus microstoma; (b)
Hypostomus albopunctatus; (c) Hypostomus nigromaculatus; (d) Hypostomus sp; (e)
Loricaria prolixa; (f) Eigenmannia virescens, (g) Geophagus brasiliensis e (h) Salminus
hilarii
Figura 11. Registro fotográfico de exemplar capturado: (a) $Acestrorhynchus\ lacustris$ 3-
26
Figura 12. Contribuição percentual em número de indivíduos para as principais famílias de
peixes, capturadas nas áreas a montante e a jusante da PCH Presidente Vargas, nas 19
campanhas realizadas
Figura 13. Contribuição percentual em número de indivíduos para as principais espécies de
peixes, capturadas nas áreas a montante e a jusante da PCH Presidente Vargas, durante
o período de estudo

Figura 14. Variação média do número de indivíduos (a) e riqueza de espécies de peixes (b), nos pontos amostrais a montante (#3 e #4) e a jusante (#1 e #2) da PCH Presidente Vargas, nas 19 campanhas realizadas. O retângulo dentral indica a média e a caixa Figura 15. Contribuição percentual em número de indivíduos para as principais espécies de peixes, capturadas nas áreas a montante e a jusante da PCH Presidente Vargas, nas amostragens de dezembro de 2015 (a), março (b), junho (c) setembro (d) e dezembro (e) de 2016; fevereiro (f), julho (g) e outubro de 2017 (h); janeiro (i), abril (j), agosto (k) e outubro (I) de 2018; janeiro (m), abril (n), julho (o) e setembro (p) de 2019; fevereiro (q) e maio (r) de 2020. 3-35 Figura 16. Variação média do número de indivíduos (a), número de espécies de peixes (b), diversidade (c) e equitabilidade (d), nas áreas a montante e a jusante da PCH Presidente Vargas, nas 19 campanhas realizadas. O retângulo dentral indica a média e a caixa Figura 17. Distribuição de frequência por classe de comprimento para Astyanax altiparanae, nos pontos amostrais a montante (#3 e #4) e a jusante (#1 e #2) da PCH Presidente Vargas, nas 19 campanhas realizadas. 3-41 Figura 18. Variação média do número de indivíduos de Astyanax altiparanae, por ponto amostral (a) e ao longo do gradiente temporal de amostragem (b). O retângulo central indica a média e a caixa representa a variação do erro padrão em torno da média. .. 3-42 Figura 19. Distribuição de frequência por classe de comprimento para Astyanax fasciatus, nos pontos amostrais a montante (#3 e #4) e a jusante (#1 e #2) da PCH Presidente Figura 20. Variação média do número de indivíduos de Astyanax fasciatus por ponto amostral (a) e ao longo do gradiente temporal de amostragem (b). O retângulo central indica a média e a caixa representa a variação do erro padrão em torno da média. .. 3-45 Figura 21 Dendrograma de agrupamento, com base nos dados de abundância das espécies de peixes capturadas nos pontos amostrais a montante (#3 e #4) e a jusante (#1 e #2) da PCH Presidente Vargas, ao longo das 19 amostragens. 3-47

LISTA DE TABELAS

Tabela 1 Coordenadas UTM e caracterização dos pontos de amostragem da Ictiofauna da
PCH Presidente Vargas. 3-12
Tabela 2. Relação das espécies de peixes e suas respectivas frequências em número, nas
áreas a montante e a jusante da PCH Presidente Vargas, durante as campanhas de
dezembro de 2015 (D), março (M), junho (J), setembro (S) e dezembro (D) de 2016 3 -
17
Tabela 3. Relação das espécies de peixes e suas respectivas frequências em número, nas
áreas a montante e a jusante da PCH Presidente Vargas, durante as campanhas de
fevereiro (F), abril (A), julho (J) e outubro (O) de 2017; janeiro (J), abril (A), agosto (A) e
outubro (O) de 2018
Tabela 4. Relação das espécies de peixes e suas respectivas frequências em número, nas
áreas a montante e a jusante da PCH Presidente Vargas, durante as campanhas de janeiro
(J), abril (A), julho (J) e setembro (S) de 2019; fevereiro (F) e maio (M) de 2020 $3-21$
Tabela 5. Relação das espécies de peixes e suas respectivas frequências em número, por
petrecho amostral, nas áreas a montante e a jusante da PCH Presidente Vargas, durante
as 19 campanhas realizadas 3-39
Tabela 6 Frequência de ocorrência absoluta (N), Biomassa (g), Comprimento Médio total,
Amplitude de Comprimento, Peso Médio total e Amplitude de Peso, das espécies de peixes
capturadas nas áreas a montante e a jusante da PCH Presidente Vargas, nas 19 campanhas
amostrais
Tabela 7. Nomenclatura científica e vulgar e status de conservação das espécies capturadas
no presente estudo, para o Programa de Monitoramento Ambiental da Ictiofauna da PCH
Presidente Vargas

1. EQUIPE TÉCNICA

Nome	Nome Formação		Registro IBAMA	Registro Profissional
Josiane Rovedder, MSc.	Bióloga	Coordenadora Geral e Geoprocessamento	355459	CRBIO 45049/03-D
Martin Homelchin	Eng° Ambiental	Coleta e Logística	1509629	CREA-SC 079803-6
Felipe Freitas Junior, MSc.	Oceanógrafo	Responsável pela Ictiofauna	2253655	AOCEANO 2224
Juliano Cesar Hillesheim	Biólogo	Responsável pela Ictiofauna	501518	CRBIO 53781-03D

2. INTRODUÇÃO

Atualmente são conhecidas 1,8 milhão de espécies de organismos vivos (COX & MOORE, 2000), dos quais aproximadamente 55.000 são vertebrados, e dentre estes, cerca de 28.000 são peixes (NELSON, 2006). A maior parte dessa riqueza e diversidade se encontra em águas tropicais (LOWE-MACCONNELL, 1999), especialmente em águas doces neotropicais, habitadas por algo estimado em 5.000 espécies válidas de peixes, podendo chegar a 8.000 se inclusas as novas espécies já reconhecidas por especialistas, porém ainda não descritas na literatura científica (SCHAEFER, 1998 e REIS *et al.* 2003). Grande parte destas espécies ocorre no Brasil, para onde foram registradas 2.587 espécies de peixes (BUCKP *et al.*, 2007), sendo que para a Bacia Hidrográfica do rio Paraná são descritas aproximadamente 600 espécies de peixes (BONETTO, 1986).

Os peixes constituem umas das principais razões do interesse do homem pelo estudo de ecossistemas aquáticos. Destacam-se entre os principais recursos potencialmente exploráveis nestes ambientes, pelo expressivo suprimento de proteínas e pela notável biomassa disponível, variando sua composição e abundância relativa em função das características hidrológicas, de acordo com a localidade e a variação sazonal (CASTRO, 2001). Além disto, desempenham um importante papel ecológico, transformando o potencial energético dos detritos ao conduzir a energia para níveis tróficos superiores (YAÑEZ-ARANCIBIA, 1985). Podem ainda ser utilizados como indicadores de qualidade ambiental, como sugerido por Lyons *et al.* (1995), onde riachos com boas condições de integridade tendem a ser ocupados por espécies de peixes nativas com várias classes de tamanho e estrutura trófica balanceada, com desaparecimento das espécies mais sensíveis e alteração nesta estrutura na medida em que a influência antrópica aumenta.

O rio Tibagi, no qual está inserida a Pequena Central Hidrelétrica Presidente Vargas, possui 550 quilômetros de extensão com cerca de 90 saltos e cachoeiras, tendo sua nascente localizada na Serra das Almas entre Ponta Grossa e Palmeira, a 1.100 metros de altitude, desaguando no reservatório da Usina Hidrelétrica de Capivara, no rio Paranapanema, a 298 m de altitude (PEREIRA & SCROCCARO, 2010). É considerada a terceira maior bacia do Estado do Paraná e o maior afluente paranaense do rio Paranapanema, abrangendo ao longo de sua extensão, uma grande diversidade de ambientes sob matriz de florestas (Ombrófila Mista e Estacional Semidecidual), intercaladas com encraves de savanas (Cerrado) e estepes (Campos) que se manifestam de acordo com as gradações altitudinal e orográfica (DE FRANÇA, 2002).

Segundo Raio e Bennemann (2010), o rio Tibagi é um dos poucos da região que vêm sendo estudado desde a década de 80, e apesar de apresentar uma elevada diversidade de peixes, vem sendo exposto a diversos impactos antrópicos ao longo de sua extensão (especialmente relacionados à construção de empreendimentos do setor elétrico), resultando em uma diminuição na abundância de peixes. Dados históricos revelam que durante as primeiras incursões a campo para caracterizar a ictiofauna deste rio, foram observadas 69 espécies de peixes (BENNEMANN *et al.*, 1995). Estudos complementares ao longo de seus afluentes e subafluentes vêm demonstrando um incremento no conhecimento da ictiofauna local, sendo catalogadas 110 espécies de peixes nos trabalhos de Shibatta *et al.* (2002), alcançando 151 espécies no estudo de Raio e Bennemann (2010).

Considerando a importância ecológica e econômica (pesca artesanal e recreacional) da ictiofauna, bem como a questão emblemática da instalação de empreendimentos do setor elétrico, com possíveis interferências nestas comunidades faunísticas, o presente trabalho teve como objetivo identificar e quantificar as espécies de peixes presentes nas regiões à jusante e a montante da barragem da Pequena Central Hidrelétrica – PCH Presidente Vargas, durante dezembro de 2015 a maio de 2020, totalizando 19 campanhas de monitoramento. Os resultados obtidos foram confrontados com o conhecimento técnicocientífico disponível para a região comparando a informação obtida com dados pretéritos.

3. MATERIAIS E MÉTODOS

3.1 Área de estudo

A Pequena Central Hidrelétrica Presidente Vargas está localizada no rio Tibagi, na divisa dos municípios de Telêmaco Borba e Ortigueira (Figura 1) Foi licenciada com objetivo de atender às necessidades das indústrias da Klabin e de alguns núcleos habitacionais da região, como Lagoa e Harmonia, na Fazenda Monte Alegre. O reservatório da PCH possui uma área equivalente a 7,64 hectares, limitada a norte pela sua barragem e a sul pela barragem da Usina Hidrelétrica Mauá. A bacia hidrográfica que drena diretamente para o reservatório da PCH Presidente Vargas corresponde a uma área de 351 hectares, algo em torno de 0,014% da bacia do rio Tibagi.

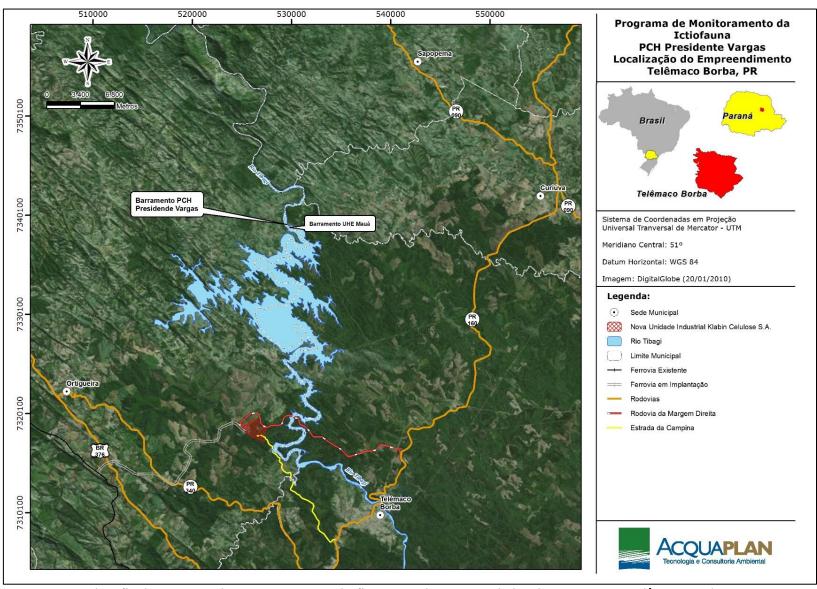


Figura 1. Localização da PCH Presidente Vargas, em relação ao rio Tibagi e as cidades de Ortigueira e Telêmaco Borba.

3.2 Trabalho de Campo

O presente relatório contempla 19 amostragens trimestrais, para o monitoramento da ictiofauna nos pontos a montante (# 3 e #4) e a jusante (# 1 e # 2) da barragem da PCH Presidente Vargas (Tabela 1, Figura 2 e Figura 3). As coletas foram realizadas entre os dias 16 a 18 de dezembro de 2015 (primeira coleta), 19 a 21 de março de 2016 (segunda coleta), 25 a 27 de junho de 2016 (terceira coleta), 19 a 21 de setembro de 2016 (quarta coleta), 10 a 12 de dezembro de 2016 (quinta coleta), 23 a 25 de fevereiro de 2017 (sexta coleta), 19 a 21 de abril de 2017 (sétima coleta), 29 a 31 de julho de 2017 (oitava coleta), 28 a 30 de outubro de 2017 (nona coleta), 20 a 22 de janeiro de 2018 (décima coleta), 23 a 25 de abril de 2018 (décima primeira coleta), 15 a 17 de agosto de 2018 (décima segunda coleta), 24 a 26 de outubro de 2018 (décima terceira coleta), 31 de janeiro a 02 de fevereiro de 2019 (décima quarta coleta), 24 a 26 de abril de 2019 (décima quinta coleta), 02 a 04 de julho de 2019 (décima sexta coleta), 24 a 26 de setembro de 2019 (décima sétima coleta), 10 a 12 de fevereiro de 2020 (décima oitava coleta) e 12 a 14 de maio de 2020 (décima nona coleta), com auxílio de redes de espera, tarrafas, covos e kicknet, nas áreas marginais dos pontos amostrais Figura 4 e Figura 7).

Devido à elevada vazão da água, não foi possível realizar as coletas no ponto amostral 3, no período de 25 a 27 de junho de 2016. Na quarta coleta, também não foi amostrado no dia 21 de setembro de 2016, em todos os pontos amostrais, em decorrência da abertura das comportas, o que ocasionou o carreamento das redes utilizadas na amostragem. Por outro lado, para a sétima amostragem (19 a 21 de abril de 2017), não foi possível a captura de exemplares ao longo dos pontos amostrais, em virtude da atividade de manutenção da PCH Presidente Vargas, onde o reservatório foi abaixado para o leito original do rio, deixando o canal de fuga completamente sem água. Na oitava campanha, no segundo e terceiro dia de amostragens (dias 30 e 31 de julho de 2017), foram furtadas as redes de espera nos pontos amostrais #03 e #04.

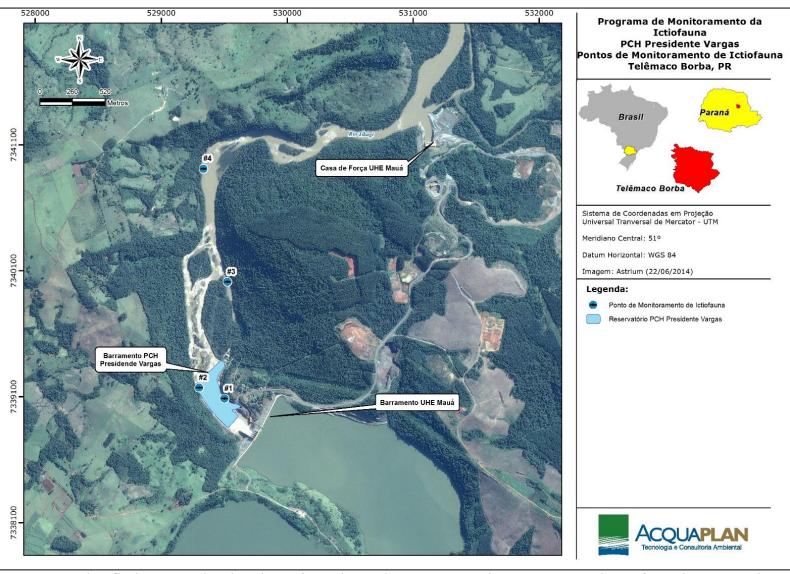


Figura 2. Localização dos pontos de coleta da ictiofauna do rio Tibagi - Programa de Monitoramento da Ictiofauna da PCH Presidente Vagas.

Tabela 1 Coordenadas UTM e caracterização dos pontos de amostragem da Ictiofauna da PCH Presidente Vargas.

Donto	UTM WG	S84 22S	Caracterias e dos Doutos amastrais
Ponto	X	Υ	Caracterização dos Pontos amostrais
#1	529503,5	7339085	Ponto mais próximo a PCH, com profundidade entre 2 a 3 metros, fundo rochoso, bem próximo a corredeiras, entretanto as amostragens foram realizadas num trecho da margem com característica mais próxima de um rio semi-lótico, margeada por vegetação de médio e grande porte.
#2	529301,9	7339171	Profundidade de 3 metros, com fundo mais arenoso, margeada por vegetação de médio e grande porte. Coletas realizadas na margem, porém com velocidade de corrente superior ao ponto 1.
#3	529526,5	7340012	Profundidade entre 2 a 3 metros, com substrato rochoso e elevada velocidade de água, com características lóticas (corredeira).
#4	529336,4	7340911	Ponto mais distante da PCH, e com águas mais calmas (características semli-lóticas), profundidade entre 1,5 a 3 metros, com substrato arenoso, margeado por mata ciliar bem preservada e vegetação de médio a grande porte.

Figura 3. Caracterização fotográfica dos pontos de coleta da ictiofauna do rio Tibagi - Programa de Monitoramento da Ictiofauna da PCH Presidente Vagas (a) #1, (b) #2, (c) #3 e (d) #4.

Para a captura dos exemplares da ictiofauna foram armadas três redes de espera, com malhas de 4 cm, 8 cm e 14 cm entre nós opostos, em cada um dos quatro pontos

amostrais, totalizando 12 redes, as quais permaneceram submersas por um período de 72 h, com intervalo de 24 horas entre as despescas (Figura 4a, b, c e d).

Figura 4. Demonstração das amostragens com redes de espera para coleta da ictiofauna, no rio Tibagi (a, b) e a despesca feita pela equipe de pesquisadores (c e d).

Foram ainda realizados a cada amostragem 40 lances de tarrafa (malha de 1,5 cm ente nós opostos), sendo 10 em cada ponto amostral (Figura 5) bem como, armado uma armadilha tipo covo para captura de peixes (Figura 6), em cada ponto (4 no total), durante um período de 12 horas, com intervalo de seis horas entre as revisões e realizados lances com o kicknet (Figura 7) durante 15 minutos em cada ponto de amostragem.

Os peixes capturados foram então acondicionados em sacos plásticos devidamente etiquetados por ponto amostral, fixados em solução de formalina a 10% e posteriormente transportados ao laboratório.

Figura 5. Demonstração das amostragens com tarrafa para coleta da ictiofauna, no rio Tibagi.

Figura 6. Demonstração das amostragens com covos para coleta da ictiofauna, no rio Tibagi.

Figura 7. Demonstração das amostragens com Kicknet para coleta da ictiofauna, no rio Tibagi.

3.2 Trabalho de Laboratório

Em laboratório, os peixes foram identificados ao menor nível taxonômico possível utilizando guias de identificação especializados, onde foi registrado o número de exemplares e realizada a biometria, em que foram mensurados o comprimento total (Lt)

em centímetros, obtido entre a ponto do focinho até a extremidade da nadadeira caudal e o peso total (Wt) em gramas. Cada indivíduo foi também fotografado.

Todas as espécies coletadas foram classificadas com relação ao seu grau de ameaça, consultando a Lista das Espécies da Fauna Brasileira Ameaçadas de Extinção (ROSA & LIMA, 2008), Lista das Espécies da Fauna Ameaçadas de Extinção no Paraná (CURITIBA, 2006) e União Internacional de Conservação da Natureza – IUCN (IUCN, 2016).

A classificação taxonômica, nomenclatura científica e popular seguiu os trabalhos de Casatti *et al.* (2001), Castro *et al.* (2003), Shibatta *et al.* (2002, 2007), Ingenito *et al.* (2004), Vari & Castro, (2007) Ribeiro & Lucena, (2007), Brito *et al.* (2008), Marceniuk *et al.* (2011), Britski *et al.* (2012), Azpelicueta & Britski (2012), Baumgartner *et al.* (2012), Garavello *et al.* (2012) e Hoffmann *et al.* (2015).

3.3 Análise dos dados

Os dados obtidos foram tabelados no programa Excel 2007, sendo confeccionada uma tabela com a abundância de organismos capturados durante o estudo. A medida de abundância foi considerada como o número total de peixes coletados em cada ponto amostral.

Para a análise da diversidade específica foram utilizados os Índices de Shannon-Wiener (H'), dado pela equação:

$$H' = -\sum_{i=1}^{S} (pi) \ln(pi)$$

Para o cálculo da equitabilidade foi utilizado o Índice de Pielou (J'), dado por:

$$J' = \frac{H'}{\ln(S)}$$

A riqueza de espécies foi calculada através do Índice de Margalef:

$$d = \frac{(S-1)}{\ln(N)}$$

Onde S é o número de espécies, n é o número total de indivíduos e ni é o número de indivíduos da espécie i.

A partir dos dados de comprimento total (Lt) foram confeccionados gráficos com as distribuições de frequência por classe de comprimento total, a fim de se caracterizar a estrutura populacional das espécies dominantes.

4 RESULTADOS E DISCUSSÃO

Durante o período de dezembro de 2015 a maio de 2020, foi capturado nas áreas a montante e a jusante da pequena hidrelétrica PCH Presidente Vargas, um total 3.644 exemplares de peixes, os quais estiveram distribuídos em quatro ordens, dez famílias, 17 gêneros e 25 espécies, perfazendo um total de 117.920,31 gramas (Tabela 2, Tabela 3, Tabela 4 e Tabela 5). O registro fotográfico de todas as espécies capturadas encontra-se na Figura 8, Figura 9, Figura 10, Figura 11.

Num contexto regional, levantamentos realizados ao longo da bacia do rio Tibagi, têm demonstrado um incremento em número de espécies ao longo dos anos, sendo observadas 69 espécies de peixes nos trabalhos de Bennemann *et al.* (1995), enquanto que abordagens mais recentes, ao longo de seus afluentes e subafluentes, revelaram a ocorrência de 110 (SHIBATTA *et al.*, 2002) a 153 espécies (PELICICE *et al.*, 2005, RAIO & BENNEMAN, 2010).

Para Pelicice *et al.* (2005), apesar deste elevado valor de riqueza regional de espécies citado acima, assembleias locais tendem a apresentar valores consideravelmente mais baixos, oscilando entre 3 a 39 espécies, sendo esta uma tendência observada em várias partes do mundo (MATTHEWS, 1998). Sendo assim, a composição de 25 espécies (Tabela 2, Tabela 3 e Tabela 4) no presente estudo, para um trecho local da região média do rio Tibagi, parece se enquadrar dentro do padrão descrito por Matthews, (1998) e Pelicice *et al.* (2005).

Tabela 2. Relação das espécies de peixes e suas respectivas frequências em número, nas áreas a montante e a jusante da PCH Presidente Vargas,

durante as campanhas de dezembro de 2015 (D), março (M), junho (J), setembro (S) e dezembro (D) de 2016.

TAXA			onto					onto		Ì			onto				Ponto 4			
	D/15	M/16	J/16	S/16	D/16	D/15	M/16	J/16	S/16	D/16	D/15	M/16	J/16	S/16	D/16	D/15	M/16	J/16	S/16	D/16
Ordem Characiformes																				
Família Parodontidae																				
Apareiodon piracicabae																				1
Família Erythrinidae																				
Hoplias malabaricus			1		1											1				
Família Anostomidae																				
Leporinus elongatus		1	1									1								
Leporinus friderici			1									1				2				
Leporinus obtusidens	2					1					4					1				
Schizodon nasutus			6					1												1
Família Characidae																				
Astyanax altiparanae	49	120	1	10	1	73	26	8	7	2	49	28		6	1	282	22	25	2	
Astyanax bockmanni	39	10	5	12		23	5	3	13		16	8		13		66	5	49	9	
Astyanax fasciatus	20	126	33	97	28	33	42	142	36	11	31	44		47	2	55	22	114	38	
Astyanax paranae	9	6				16	1				16	2				29	4			
Brycon nattereri																	1			
Galeocharax knerii	12	1	6			5	5	16		1	1				2	4		6		
Oligosarcus paranensis	3	5			1	5	4		2		1	2		1		2	1	1		
Ordem Siluriformes																				
Família Heptapteridae																				

TAXA		P	onto	1			Р	onto	2			P	onto	3			P	onto (4	
	D/15	M/16	J/16	S/16	D/16	D/15	M/16	J/16	S/16	D/16	D/15	M/16	J/16	S/16	D/16	D/15	M/16	J/16	S/16	D/16
Rhamdia quelen						2										1				
Família Pimelodidae																				
Iheringichthys labrosus		3					4				2	11				24				
Pimelodus maculatus	1		1	2			1				4	4			1	2		1		
Pimelodus microstoma																2				
Família Loricariidae																				
Hypostomus albopunctatus										1										
Hypostomus nigromaculatus			1				1			1		4			1					3
Hypostomus sp.																		1		
Loricaria prolixa																				1
Ordem Gymnotiformes																				
Família Sternopygidae																				
Eigenmannia virescens											1									
Ordem Perciformes																				
Família Cichlidae																				
Geophagus brasiliensis							1									1				1
Número de Indivíduos	135	272	56	121	31	158	90	170	58	16	125	105	0	67	7	472	55	197	49	7
Total de Espécies	8	8	10	4	4	8	10	5	4	5	10	10	0	4	5	14	6	7	3	5
Riqueza	1,42	1,25	2,23	0,62	0,87	1,38	2	0,78	0,73	1,44	1,86	1,93	-	0,71	2,05	2,11	1,25	1,13	0,51	2,05

TAXA	D/15		onto		D/16	D/15		onto	_	D/16	D/15		onto	D/16	D/15		onto	D/16
Diversidade							1,51					1,64				1,29		
Equitabilidade	0,76	0,52	0,62	0,49	0,3	0,72	0,65	0,38								0,72		

Tabela 3. Relação das espécies de peixes e suas respectivas frequências em número, nas áreas a montante e a jusante da PCH Presidente Vargas, durante as campanhas de fevereiro (F), abril (A), julho (J) e outubro (O) de 2017; janeiro (J), abril (A), agosto (A) e outubro (O) de 2018.

TAXA					nto 1							Pon	to 2							Pon	to 3							Pon	to 4			
IAXA	F/17	A/17	J/17	0/17	J/18	A/18	A/18	0/18	F/17	A/17	J/17			A/18	A/18	0/18	F/17	A/17	J/17			A/18	A/18	0/18	F/17	A/17	J/17	0/17		A/18	A/18	0/18
Ordem Characiformes																																
Família Parodontidae																																
Apareiodon piracicabae																				1												
Família Erythrinidae																																
Hoplias malabaricus																																
Família Anostomidae																																
Leporinus elongatus													1							1				1					1			
Leporinus friderici													1												1							
Leporinus obtusidens								1														2							1			
Schizodon nasutus					1		2						7							1	1			1					2			
Família Characidae																																
Astyanax altiparanae	16			11	13	10	8	9	15		3	6	8	11	6	7	20			22	10	14	3	7	26			26	14	10	14	15
Astyanax bockmanni	1						2					4			4	1								1				1			3	4
Astyanax fasciatus	6		3	3	5	3	42	20	3		12	6		1	31	18	4			4	7	4	12	12	6			7	6		17	14
Astyanax paranae				1																6	1											
Brycon nattereri																																
Galeocharax knerii	4			6	16	6	6	13	12			4	10	12	5	10	4			2	10	9	1	12	12				16	6		8
Oligosarcus paranensis	3					1					6	1									2								5		1	
Família Salmininae																																
Salminus hilarii						1								1																1		
Ordem Siluriformes																																
Família Heptapteridae																																
Rhamdia quelen			1																													
Família Pimelodidae																																
Iheringichthys labrosus																																
Pimelodus maculatus																																
Pimelodus microstoma													1																			
Família Loricariidae																																
Hypostomus albopunctatus				2									2							1					1			1			1	
Hypostomus nigromaculatus			3	4							1	3	1																	1		
Hypostomus sp.																																
Loricaria prolixa																																
Ordem Gymnotiformes																																
Família Sternopygidae																																
Eigenmannia virescens																																
Ordem Perciformes																																
Família Cichlidae																																
Geophagus brasiliensis						1																										
Número de Indivíduos	30	0	7	27	35	22	60	43	30	0	22	24	31	25	46	36	28	0	0	38	31	29	16	34	46	0	0	35	45	18	36	41
Total de Espécies	5	0	3	6	4	6	5	4	3	0	4	6	8	4	4	4	3	0	0	8	6	4	3	6	5	0	0	4	7	4	5	4
Riqueza	1,17	-		1,51	0,84		0,97	0,79		-				0,93	0,78			-	-			0,89	0,72		1,04	-	-	0,84	1,57	1,03	1,11	0,80
Diversidade	1,26	-					0,97			-					0,98			-	-				0,70			-	-				1,12	
Equitabilidade	0,78	-					0,60			-					0,71			-	 				0,63			-	-		0,79			

Tabela 4. Relação das espécies de peixes e suas respectivas frequências em número, nas áreas a montante e a jusante da PCH Presidente Vargas,

durante as campanhas de janeiro (J), abril (A), julho (J) e setembro (S) de 2019; fevereiro (F) e maio (M) de 2020.

durante as campannas de jai		(3)1 0		, , , , j c		5) C C			<u> </u>		<i>y</i> 10	· Ci Cii	<u> </u>	<u> </u>	(1	<u>., uc</u>		<u>. </u>						
TAXA			Pon	to 1					Pon	to 2					Pon	to 3					Pon	to 4		
	J/19	A/19	J/19	S/19	F/20	M/20	J/19	A/19	J/19	S/19	F/20	M/20	J/19	A/19	J/19	S/19	F/20	M/20	J/19	A/19	J/19	S/19	F/20	M/20
Ordem Characiformes																								
Família Parodontidae																								
Apareiodon piracicabae											1					1					1	1	2	
Família Erythrinidae																								
Hoplias malabaricus											1													
Família Anostomidae																								
Leporinus elongatus																								
Leporinus friderici										1										1				
Leporinus obtusidens	1																							
Schizodon nasutus			1			2	2		1		1	3	1					6		1				6
Família Characidae																								
Astyanax altiparanae	8	1	5	2	6	20	10	1	6	9	4	17	4		8	3	4	9	8	1	1	12	12	17
Astyanax bockmanni				1			1		2						3						3		1	
Astyanax fasciatus	2	1	21	23	1	23	2		19	20	3	8	5		15	12	1	9	1		38	13	21	10
Astyanax paranae						2												1						
Brycon nattereri																								
Galeocharax knerii	9	1	1	7	11	15	7	2	1	4	9	10	4	2		2	12	4	9			2		5
Oligosarcus paranensis			1		2	1			1		1						3	2						3
Acestrorhynchus lacustris																					1			
Família Salmininae																								
Salminus hilarii																								
Ordem Siluriformes																								
Família Heptapteridae																								
Rhamdia quelen				1				1		1											1			
Família Pimelodidae																								
Iheringichthys labrosus									1															
Pimelodus maculatus		2												1							2			
Pimelodus microstoma																								
Família Loricariidae																								
Hypostomus albopunctatus					1							1											1	
Hypostomus																								
nigromaculatus			1		2					1	3									1				

TAXA				to 1						to 2					Pon							to 4		
	J/19	A/19	J/19	S/19	F/20	M/20	J/19	A/19	J/19	S/19	F/20	M/20	J/19	A/19	J/19	S/19	F/20	M/20	J/19	A/19	J/19	S/19	F/20	M/20
Hypostomus sp.																								
Loricaria prolixa																								
Ordem Gymnotiformes																								
Família Sternopygidae																								
Eigenmannia virescens																								
Ordem Perciformes																								
Família Cichlidae																								
Geophagus brasiliensis		1																						
Número de Indivíduos	20	6	30	34	23	63	22	4	31	36	23	39	14	3	26	18	20	31	18	4	47	28	37	41
Total de Espécies	4	5	6	5	6	6	5	3	7	6	8	5	4	2	3	4	4	6	3	4	7	4	5	5
Riqueza	1,01	2,23	1,47	1,13	1,60	1,21	1,29	1,44	1,74	1,39	2,23	1,09	1,13	0,91	0,61	1,03	1,00	1,46	0,69	2,16	1,55	0,90	1,10	1,08
Diversidade	1,06	1		0,96											0,93							1	1,04	
Equitabilidade	0,79			0,60																				

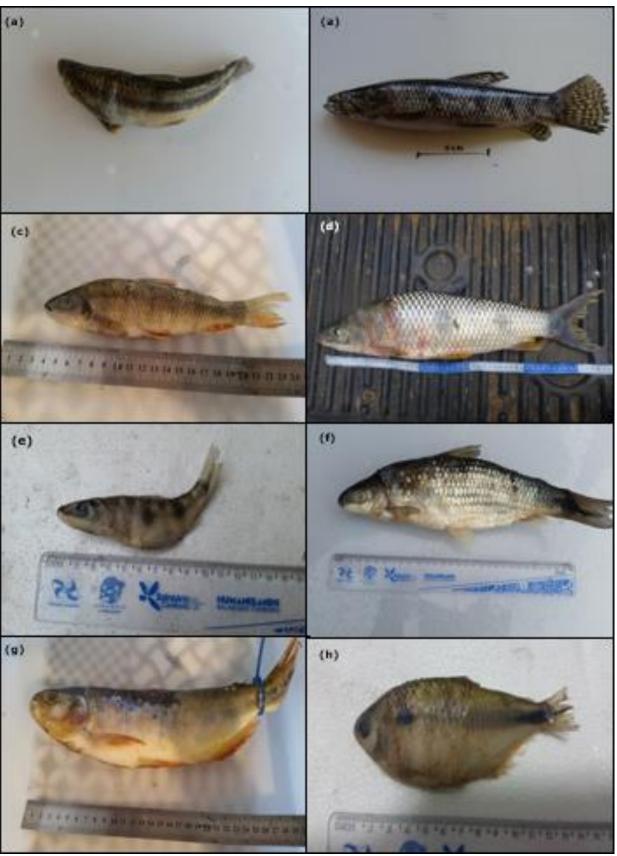


Figura 8. Registro fotográfico dos exemplares capturados: (a) *Apareiodon piracicabae*; (b) *Hoplias malabaricus*; (c) *Leporinus elongatus*; (d) *Leporinus friderici*; (e) *Leporinus obtusidens*; (f) *Schizodon nasutus*; (g) *Brycon nattereri*; (h) *Astyanax altiparanae*.

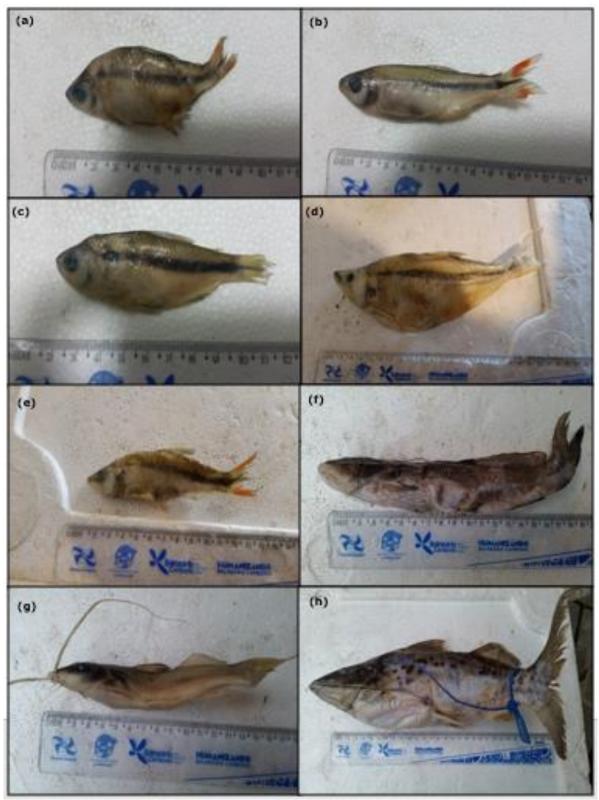


Figura 9. Registro fotográfico dos exemplares capturados: (a) Astyanax bockmanni; (b) Astyanax fasciatus; (c) Astyanax paranae; (d) Galeocharax knerii; (e) Oligosarcus paranensis; (f) Rhamdia quelen; (g) Iheringichthys labrosus e (h) Pimelodus maculatus.

Figura 10. Registro fotográfico dos exemplares capturados: (a) *Pimelodus microstoma*; (b) *Hypostomus albopunctatus*; (c) *Hypostomus nigromaculatus*; (d) *Hypostomus* sp; (e) *Loricaria prolixa*; (f) *Eigenmannia virescens*, (g) *Geophagus brasiliensis* e (h) *Salminus hilarii*.

Figura 11. Registro fotográfico de exemplar capturado: (a) *Acestrorhynchus lacustris*.

As ordens Characiformes e Siluriformes foram dominantes em número de espécies e abundância de exemplares (Tabela 2, Tabela 3 e Tabela 4), o que está de acordo com o padrão descrito por Lowe-McConnell, (1999) para os sistemas de água-doce neotropicais. Esta tendência também tem sido observada nos trabalhos realizados na bacia do rio Tibagi por Bennemann *et al.* (1995 e 2000), Shibatta *et al.* (2002 e 2007), Hoffman *et al.* (2005), Pelicice *et al.* (2005), Sant'Anna *et al.* (2006) e Langeani *et al.* (2007).

A família Characidae foi responsável por 93,96% da abundância dos peixes coletados, nas 19 coletas/campanhas realizadas, seguida por Anostomidae (2,06%), Pimelodidae com 1,92%, e Loricariidae (1,26%) (Tabela 2, Tabela 3, Tabela 4 e Figura 12). As demais famílias representaram em conjunto, apenas 0,80% dos peixes amostrados (Tabela 2, Tabela 3, Tabela 4 e Figura 12).

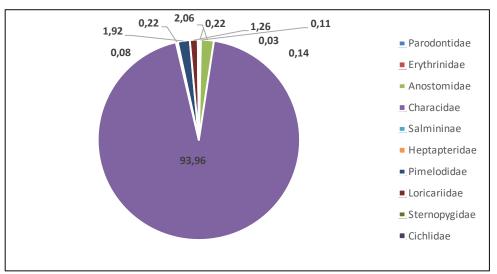


Figura 12. Contribuição percentual em número de indivíduos para as principais famílias de peixes, capturadas nas áreas a montante e a jusante da PCH Presidente Vargas, nas 19 campanhas realizadas.

Segundo Ferreira *et al.* (1993) a ordem Characiformes compreende a grande maioria de peixes de água doce do Brasil, com mais de 950 espécies descritas para a região Neotropical. A elevada participação da família Characidae é decorrente da ampla distribuição de suas espécies em água doce, além desta família incluir a maioria das espécies de peixes de águas interiores do Brasil (BRITSKI, 1972).

A predominância de Characidae no presente estudo esteve fundamentada na elevada contribuição das espécies *Astyanax fasciatus* (Cuvier, 1819) (Figura 9b) e *Astyanax altiparanae* Garutti & Britski, (2000) (Figura 8h), que em conjunto contribuíram com 71,32% de todos os peixes capturados (Figura 13). Tal dominância numérica muito provavelmente está relacionada com a grande capacidade adaptativa das espécies deste gênero, devido à flexibilidade de hábitos alimentares e a capacidade de reprodução em diversos hábitats, permitindo sua ampla distribuição e abundância ao longo da bacia do rio Tibagi (BENNEMANN *et al.* 2000, 2002 e 2005, ORSI *et al.*, 2004 e HOFFMAN *et al.*, 2005).

Além de *A. fasciatus* e *A. altiparanae* foi observada simpatria com outras duas espécies do gênero, com *Astyanax bockmanni* (Vari & Castro, 2007) (Figura 9a) contribuindo com 8,45% da abundância e *Astyanax paranae* (Eigenmann, 1914) (Figura 9c) com 2,58% (Figura 13). A saicanga, *Galeocharax knerii* (Steindachner, 1879) (Figura 9d) foi a terceira espécie em abundância representando 9,88% dos peixes capturados, seguido de *Oligosarcus paranensis* Menezes & Géry, 1983 (Figura 9e) (1,67%) e *Iheringichthys labrosus* (Kröyer, 1874) (Figura 9g) com 1,23% (Figura 13). As demais espécies em conjunto contribuíram com apenas 4,86% do total amostrado, o que está de acordo com os trabalhos realizados na bacia do rio Tibagi, onde apesar do grande número de espécies observadas regionalmente (151 ou 153, como citado no trabalho de Pelicice *et al.*, 2005), poucas se sobressaem em número de indivíduos (SHIBATTA *et al.*, 2002 e 2007, HOFFMAN *et al.*, 2005, PELICICE *et al.*, 2005 e LANGEANI *et al.*, 2007).

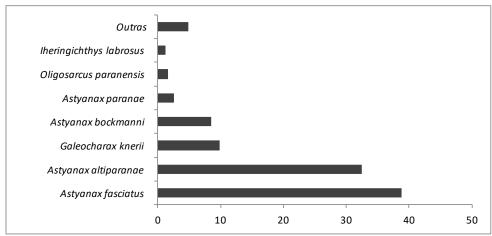


Figura 13. Contribuição percentual em número de indivíduos para as principais espécies de peixes, capturadas nas áreas a montante e a jusante da PCH Presidente Vargas, durante o período de estudo.

Em afluentes e subafluentes das regiões média e inferior da bacia do rio Tibagi, Shibatta et al. (2002) destacaram a presença de quatro espécies de Astyanax: A. altiparanae, A. eigenmanniorum (Cope, 1894) (recentemente reclassificada como A. bockmanni), A. fasciatus e A. scabripinnis (Jenyns, 1842), esta última muito provavelmente pertencente ao complexo A. paranae. Espécies estas, presentes em simpatria no presente estudo/monitoramento, com participações distintas ao longo das áreas amostradas, demonstrando as diferentes formas de ocupação ao longo do gradiente amostral, muito provavelmente em função das estratégias alimentares e utilização do espaço (presença de abrigos/diversidade de habitats entre os locais comparados) (BENNEMANN et al., 2000, 2002 e 2005, ORSI et al., 2004 e HOFFMAN et al., 2005).

É importante destacar que nas áreas de maior velocidade de corrente, como nos pontos 1 e 3 (Tabela 1 e Figura 3), houve uma pequena dominância de *A. altiparanae* sobre as demais espécies deste gênero (dez/15), alternando suas participações na comunidade com *A. fasciatus*, especialmente nas coletas de junho e setembro de 2016, em que o rio apresentava elevada vazão de água Tabela 2, Tabela 3 e Tabela 4). Por outro lado, no ponto 4 (característica de rio semi-lótico) este domínio (dez/15) foi mais acentuado, o que segundo Orsi *et al.* (2004) e Bennemann *et al.* (2002 e 2005), está de acordo com a biologia da espécie, que apesar de sua ampla distribuição e capacidade adaptativa destacada acima, tem preferência por águas mais calmas, nas margens dos rios da bacia do Tibagi.

Ainda neste sentido, o de distribuição diferenciada das espécies ao longo dos pontos amostrais, Araújo-Lima, (1995) definem ambientes distintos nos corpos aquáticos, identificando proporções diferenciadas entre espécies de Characiformes e Siluriformes que mudam marcadamente sua proporção em relação ao hábitat. Em geral, nos ambientes

próximos às margens é observada uma maior participação das espécies de Characiformes, enquanto que os Siluriformes e Gymnotiformes são mais abundantes nos canais de rios e no fundo (BENNEMANN *et al.*, 2000 e 2002). Tal configuração pôde ser observada claramente ao longo dos pontos amostrais, onde nos pontos 1 e 2 (onde as coletas foram realizadas nas margens do rio), houve um predomínio dos Characiformes e pequena participação dos Siluriformes, enquanto que no ponto 3 onde a amostragem foi mais no canal do rio já foram observadas mais espécies de Siluriformes, além da presença exclusiva do Gymnotiforme *Eigenmannia virescens* (Valenciennes, 1847) (Tabela 2, Tabela 3, Tabela 4).

No ponto 4, caracterizado por apresentar águas mais tranquilas (rio semi-lótico) apesar da dominância dos Characiformes, foi observada uma maior participação dos Siluriformes se comparado com as demais áreas. Isto indica que, provavelmente estas espécies apresentem preferência por águas mais calmas no fundo dos rios, uma vez que foram capturados no fundo do canal por tarrafas e covos e na parte inferior das redes (Tabela 5).

Por outro lado, os Characidae foram mais abundantes nas margens do canal, na porção superficial da coluna d'água. Tais configurações estão de acordo com o apresentado por Bennemann *et al.* (2000 e 2002), demonstrando as interações interespecíficas de coexistência entre as espécies, ou seja, para não competirem entre si apresentam diferentes formas de alimentação e utilização do espaço ao longo do gradiente amostral.

As maiores abundâncias de exemplares foram também observadas no ponto 4, assim como, as maiores riquezas de espécies, sendo observadas 24 das 25 espécies coletadas no presente estudo, com quatro exclusivas deste ambiente, como a pirapitinga *Brycon nattereri* Günther, 1864 (Figura 8g), a bocarra *Acestrorhynchus lacustris* (Lütken, 1875) (Figura 11a), o cascudo *Hypostomus sp.* (Figura 10d) e o cascudo-chinelo *Loricaria prolixa* Isbrücker & Nijssen, 1978 (Figura 10e) (Tabela 2, Tabela 3, Tabela 4, e Figura 14).

Contudo como comentado anteriormente, apesar desta maior diversidade, o elevado predomínio de *A. altiparanae* (dez/15) e de *A. fasciatus* (jun/16), sobre as demais espécies nesta porção do rio, acabou reduzindo a equitabilidade deste local, especialmente para as coletas de dezembro de 2015 (Tabela 2, Tabela 3 e Tabela 4).

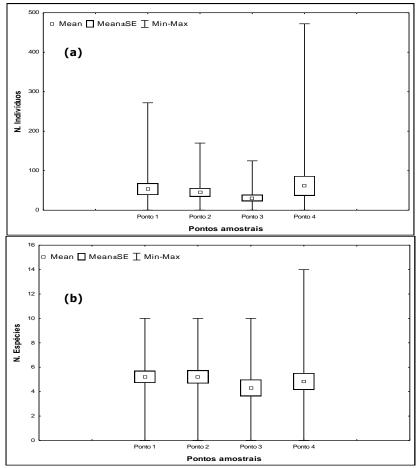


Figura 14. Variação média do número de indivíduos (a) e riqueza de espécies de peixes (b), nos pontos amostrais a montante (#3 e #4) e a jusante (#1 e #2) da PCH Presidente Vargas, nas 19 campanhas realizadas. O retângulo dentral indica a média e a caixa representa a variação do erro padrão em torno da média.

Comparativamente, as amostragens trimestrais realizadas de dezembro de 2015 a maio de 2020 revelaram mudanças na composição da comunidade de peixes, ao longo dos pontos amostrais de influência da PCH Presidente Vargas, com o incremento de três novas espécies em março de 2016: *Leporinus elongatus* (Valenciennes, 1849) (Figura 8c), *Brycon nattereri* (Günther, 1864) (Figura 8g) e *Hypostomus nigromaculatus* (Schubart, 1964) (Figura 10c) e duas em junho de 2016: *Schizodon nasutus* (Kner, 1859) (Figura 8f) e *Hypostomus* sp. (Figura 10d) (Tabela 2). Ao passo que em setembro de 2016 não foi verificada a ocorrência de novos táxons, com apenas cinco espécies registradas nas amostragens. Contudo, como mencionado na metodologia, no mês de setembro, devido à abertura das barragens e o carreamento das redes dos pontos de coleta, foi efetuado um esforço de um dia a menos de coleta (21/09), que possivelmente tenha influenciado na riqueza e abundância de peixes. Em dezembro de 2016, embora tenha sido capturado o menor número de peixes entre os meses de amostragem (em virtude do baixo nível dos rios e consequentemente, deslocamento para outras regiões), foram observadas três novas espécies, sendo estas o

canivete *Apareiodon piracicabae* (Figura 8a), o cascudo *Hypostomus albopunctatus* (Regan, 1908) (Figura 10b) e o cascudo-chinelo *Loricaria prolixa* (Figura 10e). Tais resultados demonstram a complexidade dos ecossistemas amostrados e a necessidade da continuidade dos estudos de monitoramento, perante o constante o aparecimento de novas espécies.

As espécies dominantes mantiveram-se praticamente as mesmas, com alterações nas participações de cada uma entre as coletas, com destaque para *Astyanax fasciatus*, que contribuiu com as maiores capturas para o mês de março e principalmente em junho e setembro de 2016 (Tabela 2, Tabela 3 e Figura 15), além da pequena participação dos Siluriformes na terceira e quarta coletas. Tais padrões obtidos, muito provavelmente estão relacionados com a própria biologia das espécies capturadas e seus movimentos ao longo dos gradientes espaciais e sazonais na área de estudo. Especialmente pela variação das condições hidrológicas, onde a elevada vazão da água em junho de 2016 pode ter resultado na diminuição da representatividade dos Siluriformes, bem como, na alternância das populações de *A. altiparanae* e *A. fasciatus*.

Por outro lado, na quinta coleta (dez/2016), em virtude do baixo nível dos rios, houve uma maior participação dos Siluriformes, especialmente da família Loricaridae, representada pelos cascudos, e uma pequena abundância dos Characidae (gênero Astyanax) em comparação as demais amostragens. De um modo geral, os *Astyanax* apresentam baixa tolerância a estas condições ambientais e muito provavelmente tenham se deslocado para áreas mais profundas, o que explica, por exemplo, a ausência destes organismos no ponto 4, que em dezembro de 2015, quando o rio apresentava um maior nível de água, foram as espécies dominantes nas amostragens.

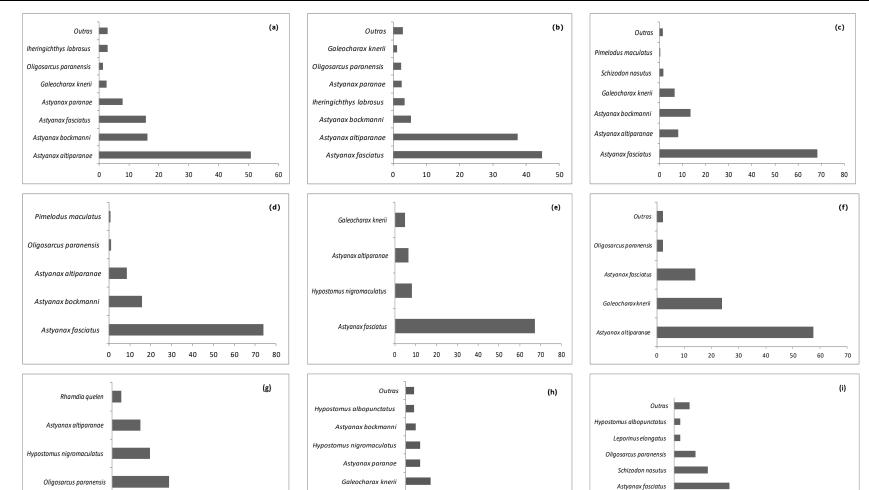
Nas amostragens de fevereiro de 2017, novamente ocorreram mudanças na assembleia de peixes da PCH Presidente Vargas, com *A. altiparanae* voltando a contribuir com as maiores abundâncias, a exemplo do observado em dezembro de 2015 (Figura 15). Contudo, para este mês de amostragem, em que o rio apresentava-se novamente com baixo volume de água, houve uma elevada participação das espécies carnívoras, com a Saicanga, *Galeocharax knerii* ocupando a segunda posição em abundância, com 23,88% do total de peixes capturados e *Oligosarcus paranensis* contribuindo com a quarta colocação entre os peixes mais abundantes (Figura 15). Tais resultados corroboram a importância da vazão do rio na estruturação da comunidade de peixes locais, em conjunto com as relações de interação entre as espécies, neste exemplo, muito provavelmente vinculadas à alimentação/predação exercida pelas carnívoras.

Em abril de 2017, não foram capturados exemplares em virtude das atividades de manutenção da PCH Presidente Vargas, que deixaram o canal de fuga completamente sem água, ao passo que nas campanhas de julho de 2017, com o retorno do nível de água aos canais (meses anteriores), foi observado um repovoamento da ictiofauna da PCH, com *A. fasciatus* contribuindo com as maiores abundâncias registradas (Figura 15). Também é interessante ressaltar a elevada contribuição das espécies carnívoras, como *Oligosarcus* paranensis, a exemplo do observado em fevereiro deste ano.

Em outubro de 2017, o monitoramento do processo sucessional, pós-impacto das manutenções de abril, demonstra uma tendência de retorno da comunidade íctica às composições específicas observadas no início das coletas, com *A. altiparanae* novamente se caracterizando como espécie chave, sobressaindo em abundância sobre as demais espécies (Figura 15). Contudo, destaca-se que ainda foi capturado um menor número de indivíduos e espécies em relação a dezembro de 2015, bem como, é importante mencionar a elevada contribuição de cascudos do gênero Hypostomus. Tais padrões estão de acordo com o esperado dentro do processo de sucessão ecológica, com pequenas readequações da comunidade perante o cenário atual.

Em janeiro de 2018 novamente observou-se uma elevada contribuição das espécies carnívoras, seguindo o padrão verificado no início do repovoamento região (Tabela 2, Tabela 3, e Figura 15). Para este mês de amostragem, a saicanga *Galeocharax knerii* foi a espécie mais representativa em número de exemplares, inclusive superando *A. altiparanae* que ocupou a segunda posição em abundância, com 31,69% dos peixes capturados, seguida de *Astyanax fasciatus* (12,68%), *Schizodon nasutus* (7,75%), *Oligosarcus paranensis* (4,93%), *Leporinus elongatus* e *Hypostomus albopunctatus*, ambos com 1,41% do total capturado em número região (Tabela 2, Tabela 3 e Figura 15).

Na campanha de abril de 2018 foi observada a presença de uma nova espécie na assembleia de peixes da PCH Presidente Vargas, sendo esta a tabarana *Salminus hilarii* (Valenciennes, 1849), que por ser uma espécie migradora, encontra-se quase ameaçada de extinção (NT), no Estado do Paraná. *A. altiparanae* se manteve como dominante nas amostragens, seguida de *Galeocharax knerii e Astyanax fasciatus*, mantendo-se o padrão observado nas coletas anteriores região (Tabela 2, Tabela 3 e Figura 15).


Para a amostragem de agosto de 2018, *Astyanax fasciatus* voltou a figurar como espécie dominante na assembleia de peixes da PCH, seguida por *A. altiparanae*, *G. knerii* e A. *bockmanni*, a exemplo do observado nos períodos iniciais de monitoramento, em que principalmente a vazão natural do rio determinava as mudanças na estrutura da comunidade

de peixes (Tabela 2, Tabela 3 e Figura 15). Destaca-se que para este mês de coleta, o nível do reservatório encontrava-se baixo, devido ao pequeno volume de chuvas para a estação do ano. Dentre os exemplares de *Astyanax fasciatus* amostrados neste período, 26 (cerca 25% do total amostrado para a espécie) apresentavam gônadas maturas, especialmente nos pontos amostrais 1, 2 e 4, corroborando a hipótese levantada de que o ponto 3 realmente parece não constituir um ambiente adequado a reprodução da espécie.

Na campanha, realizada em outubro de 2018, *Astyanax fasciatus* manteve-se como dominante, (ainda com uma grande quantidade de exemplares com gônadas maturas), com a saicanga *G. knerii* ocupando a segunda posição em abundância, seguida de A. *bockmanni, Schizodon nasutus, Leporinus elongatus e Leporinus obtusidens* (Tabela 2, Tabela 3 e Figura 15). Em de janeiro de 2019, *A. altiparanae* novamente figurou como a espécie dominante nas amostragens, seguido da carnívora *Galeocharax knerii* e de *Astyanax fasciatus*, a exemplo do observado em períodos anteriores, fortalecendo a presença de padrões determinados principalmente pelo regime hídrico da região (Tabela 2, Tabela 3, Tabela 4 e Figura 15).

Em abril de 2019 foi capturado um pequeno número de exemplares nas amostragens (17 indivíduos), muito provavelmente associado à baixa vazão do rio, onde predominaram as saicangas *Galeocharax knerii*, seguido *Astyanax altiparanae* e *Pimelodus maculatus*. Nas coletas de julho e setembro de 2019, *Astyanax fasciatus*, voltaram a ser dominantes ao longo da PCH Presidente Vargas, seguidas de *Astyanax altiparanae* e *G. knerii*. Destaca-se na 16ª amostragem a presença de uma espécie que ainda não havia sido amostrada nos anos anteriores, sendo esta a bocarra *Acestrorhynchus lacustris* (Lütken, 1875) (Tabela 2, Tabela 3, Tabela 4 e Figura 15).

Em fevereiro de 2020, a saicanga, *G. knerii* foi predominante nas amostragens, seguida por *A. fasciatus e A. altiparanae* (Tabela 2, Tabela 3, Tabela 4 e Figura 15). Ao passo que em maio de 2020, *A. altiparanae*, seguida de *A. fasciatus* mais uma vez representaram as maiores abundâncias da comunidade de peixes da PCH Presidente Vargas (Tabela 2, Tabela 3, Tabela 4 e Figura 15).

Astyanax fasciatus

0 10

20 30 40 50

Astyanax altiparanae

Astyanax fasciatus

10

20

30

Astyanax altiparanae

60

Galeocharax knerii

5

10 15 20 25 30 35

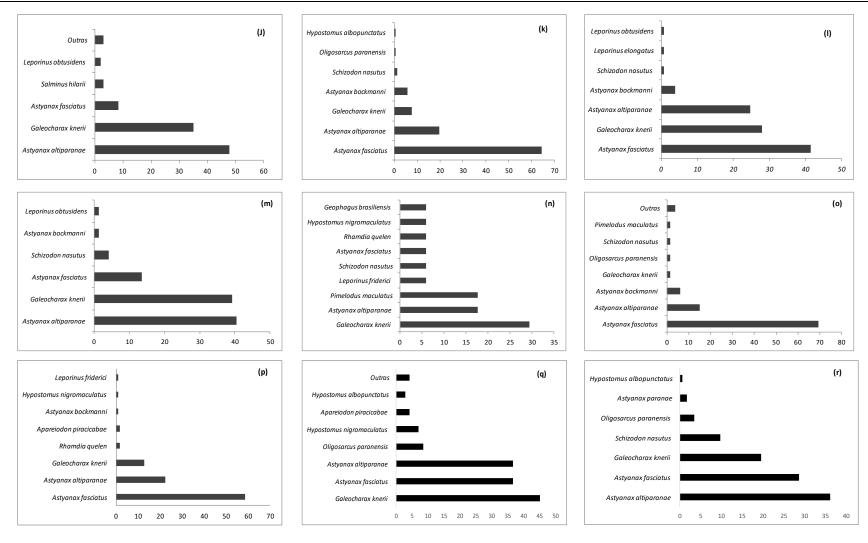


Figura 15. Contribuição percentual em número de indivíduos para as principais espécies de peixes, capturadas nas áreas a montante e a jusante da PCH Presidente Vargas, nas amostragens de dezembro de 2015 (a), março (b), junho (c) setembro (d) e dezembro (e) de 2016; fevereiro (f), julho (g) e outubro de 2017 (h); janeiro (i), abril (j), agosto (k) e outubro (l) de 2018; janeiro (m), abril (n), julho (o) e setembro (p) de 2019; fevereiro (q) e maio (r) de 2020.

Quanto ao número de organismos capturados, bem como, em relação à riqueza e a diversidade, as amostragens de dezembro de 2015 apresentaram valores médios superiores as demais, muito provavelmente relacionados à vazão do rio Tibagi (Figura 16).

Nas coletas de março de 2016, os pontos de amostragem encontravam-se com um nível de água significativamente mais baixo que o observado em dezembro de 2015, o que pode ter ocasionado na movimentação dos peixes para locais com maior vazão. A baixa representatividade de indivíduos no ponto 4 (mar/2016) corrobora esta hipótese, uma vez que este foi o ponto com menor número de indivíduos coletados, e que em dezembro de 2015 apresentava as maiores abundâncias de organismos, por apresentar águas mais calmas e rodeadas por vegetação ciliar bem preservada (Tabela 2, Tabela 3 e Figura 16).

Por outro lado, os rendimentos ainda mais baixos obtidos em junho e setembro de 2016 podem estar vinculados a uma elevada vazão nesta porção média do rio Tibagi, resultante da abertura de comportas das barragens que drenam para esta localidade, provocando um deslocamento das populações de peixes ainda mais acentuado que o observado em março deste ano, resultando em mudanças na composição e estrutura da comunidade, com redução na abundância, na riqueza e na diversidade de peixes (Tabela 2, Tabela 3 e Figura 16). Tais resultados corroboram a importância das condições hidrológicas locais (vazão do rio) na estruturação da comunidade de peixes da Pequena Central Hidrelétrica PCH Presidente Vargas. Além disto, é de comum consenso que amostragens nos meses de primavera (dez/15) e verão (mar/16), geralmente apresentem maiores abundâncias de organismos, associados com maior temperatura da água, maior disponibilidade de alimento, bem como, a ocorrência de eventos reprodutivos e de recrutamento.

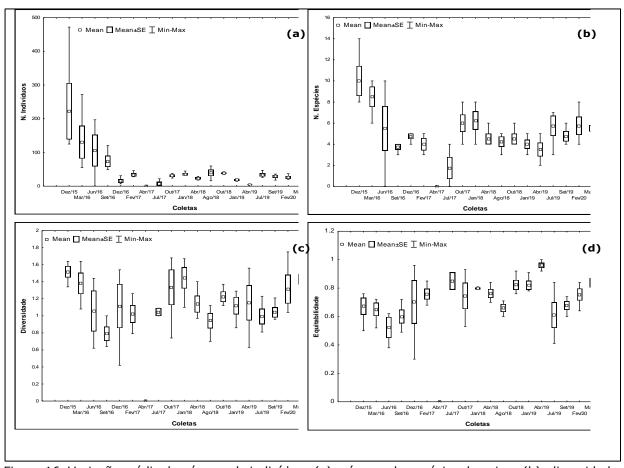


Figura 16. Variação média do número de indivíduos (a), número de espécies de peixes (b), diversidade (c) e equitabilidade (d), nas áreas a montante e a jusante da PCH Presidente Vargas, nas 19 campanhas realizadas. O retângulo dentral indica a média e a caixa representa a variação do erro padrão em torno da média.

Na sexta campanha amostral (fev/2017), embora a captura em número de indivíduos, tenha se apresentado baixa, se comparada ao mesmo período de 2016 (mar/2016), observa-se um incremento na abundância de peixes, bem como, nos índices de diversidade e equitabilidade aos apresentados no final do ano de 2016 (dez/2016), em que o rio apresentava-se com as menores profundidades observadas durante o presente monitoramento. Tal configuração muito provavelmente tenha resultado em um grande deslocamento de peixes para áreas adjacentes e um possível retorno (com modificações na estrutura e composição da comunidade, citadas anteriormente) em fevereiro de 2017.

Como comentado anteriormente, na sétima campanha amostral não foram capturados exemplares ao longo dos pontos amostrais, em virtude da atividade de manutenção da PCH Presidente Vargas, que deixou o canal de fuga completamente sem água. Durante este período de manutenção foi realizado o resgate das espécies de peixes ao longo do canal de fuga, bem como, no reservatório da PCH. Etapa esta que foi desenvolvida pela equipe de resgate de fauna da Usina Mauá.

Com o término da manutenção da PCH e retorno dos níveis de água do reservatório e canal de fuga, nos meses seguintes, foi observado um repovoamento da ictiofauna (campanha oito), entretanto, as abundâncias, bem como, o número de espécies, riqueza e diversidade foram significativamente mais baixos se comparado com os períodos iniciais de monitoramento (dezembro de 2015 a setembro de 2016), o que de certo modo era esperado, perante o "impacto" sofrido pela comunidade. Contudo há de se destacar que nos pontos amostrais 3 e especialmente no ponto 4 (comumente caracterizado por apresentar elevados rendimentos em captura e número de espécies), as redes de espera foram furtadas em dois dos três dias de amostragem, o que muito provavelmente tenha contribuído para este baixo rendimento.

Em outubro de 2017, como comentado anteriormente quando abordado a composição de espécies, verifica-se uma tendência de recuperação da comunidade de peixes da PCH, especialmente para o número de indivíduos, a riqueza e a diversidade de espécies, os quais se mantiveram constantes para as amostragens de janeiro de 2018, seguido de leve diminuição em abril de 2018 e pequenos incrementos e oscilações em agosto e outubro de 2018 (Figura 16b). De um modo geral, as maiores variações nestes períodos ocorreram para o índice de diversidade, muito possivelmente associado ao baixo volume das águas, onde um pequeno número de espécies se manteve ainda no ambiente. Destaca-se na 11ª coleta, a presença da tabarana *Salminus hilarii*, que até o presente momento ainda não havia sido registrada na localidade.

Em janeiro e principalmente em abril de 2019, em virtude da manutenção do baixo nível do rio foram observados pequenos rendimentos em número de exemplares capturados, com apenas 17 indivíduos coletados em abril de 2019. Contudo apesar desta baixa abundância e riqueza de espécies, as diversidades e equitabilidades apresentaram um aumento, pois não houve dominâncias significativas de uma espécie sobre as outras, ou seja, foram poucos os exemplares que ainda conseguiram se manter no ambiente com a pequena lâmina de água disponível para eles. Em julho de 2019, observou-se um aumento no número de indivíduos capturados, bem como, no número de espécies, com destaque para a presença da bocarra *Acestrorhynchus lacustris* (Lütken, 1875) (Figura 11a). As coletas de setembro de 2019, fevereiro e maio de 2020 mantiveram a tendência de julho, com pequenos incrementos nos índices de diversidade e equitabilidade da comunidade, ao passo em que as abundâncias de indivíduos se mantiveram constantes.

Na Tabela 5 estão descritas as capturas por petrecho amostral, onde para as 19 campanhas realizadas, pôde-se observar que de um modo geral, a rede de espera com malha de 3,0

cm entre nós opostos contribuiu com as maiores capturas em número de espécies e abundâncias de exemplares, ao passo que o kicknet e os covos resultaram nas menores capturas, sendo que no kicknet não foi capturado nenhum exemplar.

Contudo, apesar das menores contribuições dos outros métodos, foram capturados exemplares que não seriam selecionados pelas redes de malha 3,0 cm, como o mandi *Pimelodus microstoma* (Steindachner, 1877), amostrados com a tarrafa/malha 8,0 cm e o cascudo-chinelo *Loricaria prolixa* (Isbrücker & Nijssen, 1978), com a malha de 8,0 cm (Tabela 5). Estes resultados demonstram a importância da diversificação dos métodos amostrais na caracterização da biodiversidade de peixes nas áreas a montante e a jusante da PCH Presidente Vargas.

Tabela 5. Relação das espécies de peixes e suas respectivas frequências em número, por petrecho amostral, nas áreas a montante e a jusante da PCH Presidente Vargas, durante as 19 campanhas realizadas.

TAXA	Tarrafa	Covo	Kicknet		Malha	
				3,0cm	8,0cm	12,0cm
Ordem Characiformes						
Família Parodontidae				0		
Apareiodon piracicabae				8		
Família Erythrinidae					_	
Hoplias malabaricus					3	1
Família Anostomidae						
Leporinus elongatus				4	3	
Leporinus friderici				3	2	3
Leporinus obtusidens				13		
Schizodon nasutus				30	17	
Família Characidae						
Astyanax altiparanae	44	1		1135	4	
Astyanax bockmanni	13			295		
Astyanax fasciatus	47			1368		
Astyanax paranae				94		
Brycon nattereri					1	
Galeocharax knerii	1			270	89	
Oligosarcus paranensis	2			59		
Acestrorhynchus lacustris				1		
Família Salmininae						
Salminus hilarii				3		
Ordem Siluriformes						
Família Heptapteridae						
Rhamdia quelen		1		3	4	
Família Pimelodidae						
Iheringichthys labrosus	26			16	3	
Pimelodus maculatus	2			10	10	
Pimelodus microstoma	2				1	
Família Loricariidae						
Hypostomus albopunctatus				5	6	1
Hypostomus nigromaculatus				3	27	2
Hypostomus sp.				1		

TAXA	Tarrafa	Covo	Kicknet		Malha	
IAAA	Tarrara	COVO	Rickiiet	3,0cm	8,0cm	12,0cm
Loricaria prolixa					1	
Ordem Gymnotiformes						
Família Sternopygidae						
Eigenmannia virescens				1		
Ordem Perciformes						
Família Cichlidae						
Geophagus brasiliensis	2			2	1	
Número de Indivíduos	139	2	0	3324	172	7
Total de Espécies	9	2	0	21	15	4
Riqueza	1,62	1,44	-	2,46	2,73	1,54
Diversidade	1,54	0,69	-	1,00	1,70	1,27
Equitabilidade	0,70	1,00	-	0,49	0,63	0,92

A Tabela 6 apresenta uma síntese dos dados biométricos das espécies de peixes capturadas nas 19 campanhas do presente estudo, onde os menores comprimentos e pesos foram observados para *Astyanax bockmanni*, enquanto que os maiores valores ocorreram para o piau-três-pintas, *Leporinus friderici* (Bloch, 1794).

De acordo com a classificação de Vazzoler (1996), utilizada nos trabalhos de Shibatta *et al.*(2002), a qual determina que peixes com comprimentos inferiores a 200 mm podem ser considerados como peixes de pequeno porte; entre 200 e 400 mm, peixes de médio porte; e comprimentos superiores a 400 mm, peixes de grande porte; a grande maioria das espécies coletadas no presente estudo (Tabela 6) pode ser considerada como de pequeno porte. Tais resultados corroboram a afirmação de Castro (1999), de que a ictiofauna de riachos sul-americanos é composta predominantemente por indivíduos de pequeno porte.

Os exemplares de médio porte foram representados pelas espécies, *Hoplias malabaricus, Leporinus elongatus, Schizodon nasutus, Galeocharax knerii, Acestrorhynchus lacustris, Salminus hilarii, Rhamdia quelen, Iheringichthys labrosus, Hypostomus nigromaculatus, Hypostomus albopunctatus e Loricaria prolixa,* enquanto que *Leporinus friderici* (Bloch, 1794), *Brycon nattereri* e *Pimelodus maculatus* apresentaram indivíduos de grande porte, nas 19 campanhas realizadas até o momento (Tabela 6).

A Figura 17 apresenta as distribuições de frequência por classe de comprimento para *A. altiparanae*, espécie dominante em dezembro de 2015, onde se iniciaram as atividades de amostragem para o presente programa de monitoramento da Ictiofauna da PCH Presidente Vargas, bem como, nas últimas amostragens. A amplitude de variação do comprimento total foi de 6,5 a 14,5 cm, com picos de captura nas classes de 9,0, 10,0 e 11,0 cm, com diferenças pontuais entre as áreas analisadas.

No ponto amostral 3, caracterizado por apresentar um sistema com corredeiras e maiores velocidades de corrente, a análise das distribuições de frequência por classe de comprimento, demonstra uma pequena participação de indivíduos nas classes inferiores, se comparado com as demais áreas, bem como, uma menor contribuição das classes de maior tamanho, estando ausentes indivíduos com comprimentos superiores a 13,0 cm (Figura 17). Estes dados muito provavelmente demonstram que o ponto 3 não seja uma área de recrutamento e reprodução para *A. altiparanae*, podendo representar apenas um trecho de alimentação ou passagem, a qual os indivíduos adultos conseguem explorar, a exemplo do observado no trabalho de Orsi *et al.* (2004) para o médio rio Paranapanema.

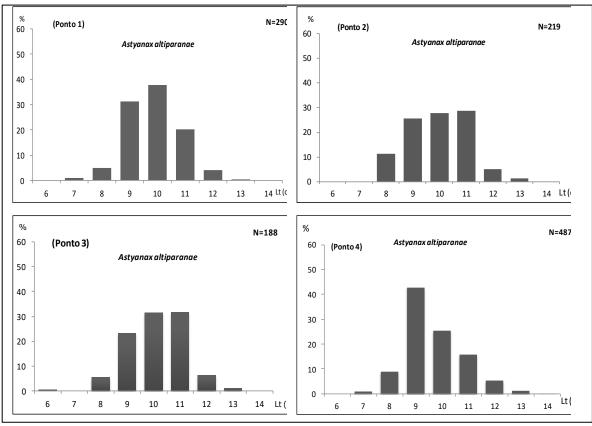


Figura 17. Distribuição de frequência por classe de comprimento para *Astyanax altiparanae*, nos pontos amostrais a montante (#3 e #4) e a jusante (#1 e #2) da PCH Presidente Vargas, nas 19 campanhas realizadas.

Os dados de abundância da espécie ao longo dos trechos amostrados (Figura 18) corroboram a afirmação de que o ponto 3 não constitui um ambiente favorável ao desenvolvimento da população de *A. altiparanae*, sendo observadas as menores abundâncias em relação aos demais pontos de amostragem. Tais padrões estão de acordo com o observado por Bennemann *et al.* (1995) e Shibatta *et al.* (2002), os quais verificaram baixas frequências destas espécies em trechos de correnteza acentuada do médio e alto rio Tibagi. A espécie apesar da elevada capacidade adaptativa, não se desenvolve plenamente em trechos mais

caudalosos. Por outro lado, o ponto amostral 4, caracterizado por apresentar águas mais calmas e margeadas por vegetação ciliar bem preservada, muito possivelmente abriga diversas etapas do ciclo de vida de *A. altiparanae*. Neste ponto foi observada uma maior abundância de organismos (Figura 18a), bem como, uma maior diversidade de classes de comprimento (Figura 17), desde indivíduos juvenis a adultos de maior porte, em relação às demais áreas. Ou seja, a área onde está localizado o ponto 4 pode estar funcionando como local de alimentação, refúgio e reprodução para a espécie.

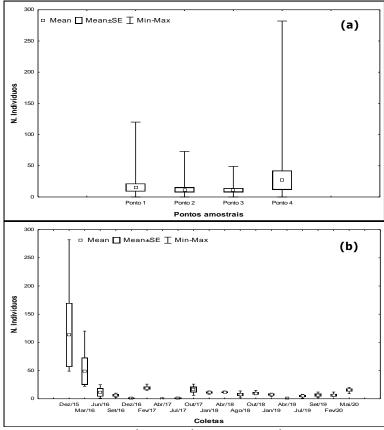


Figura 18. Variação média do número de indivíduos de *Astyanax altiparanae*, por ponto amostral (a) e ao longo do gradiente temporal de amostragem (b). O retângulo central indica a média e a caixa representa a variação do erro padrão em torno da média.

Como comentado anteriormente, a análise temporal da abundância de *A. altiparanae*, revelou uma diminuição na captura da espécie ao longo do período de coleta, com as maiores contribuições em dezembro de 2015, e as menores em junho e setembro de 2016. Os dados, muito possivelmente estão relacionados com a elevada vazão do rio, uma vez que a espécie não se desenvolve plenamente em ambientes muito caudalosos, sendo então gradativamente substituída por *Astyanax fasciatus* (Figura 18b). Por outro lado, as pequenas participações nas amostragens de dezembro de 2016, muito provavelmente estejam

relacionadas ao volume de água muito baixo nos pontos amostrais, provocando o deslocamento da espécie para áreas mais profundas.

Em fevereiro de 2017 observa-se uma recuperação gradativa na abundância da espécie, passando a figurar novamente como a dominante nas amostragens, porém, inferior ao mesmo período de 2016. Em abril de 2017, devido ao nível do rio ter ficado completamente sem água, em virtude das atividades de manutenção da PCH, não foi capturado nenhum exemplar de *A. altiparanae*, ao passo que em julho de 2017 foram capturados apenas três exemplares da espécie. Em outubro de 2017, voltou a contribuir com as maiores abundâncias, com 65 indivíduos capturados, enquanto que em janeiro e abril de 2018, 45 exemplares estiveram presentes nas (Figura 18b).

Na campanha de agosto de 2018, foi a segunda espécie mais abundante (31 indivíduos), sendo substituída por *A. fasciatus*, enquanto que em outubro deste ano, foi a terceira em abundância, sendo substituída por *G. knerii*. Em janeiro de 2019 foi novamente dominante ao longo dos pontos amotrais da PCH Presidente Vargas, enquanto que em abril de 2019, apenas três espécimes de *A. altiparanae* foram capturados, sendo novamente superada em abundância por *G. knerii*, a qual participou com cinco indivíduos, sendo a espécie numericamente mais abundante para este mês. Para os meses de julho e setembro de 2019, bem como em fevereiro de 2020, *A. altiparanae* foi a segunda espécie mais representativa, contribuindo com 20, 26 e 26 exemplares respectivamente. Em maio de 2020, mais uma vez foi dominante nas amostragens (Figura 18b).

Para *A. fasciatus*, a amplitude de variação do comprimento total foi de 7,5 a 16,0 cm, com as maiores capturas ocorrendo nas classes de 10,0 e 11,0 cm em todos os pontos amostrais (Figura 19).

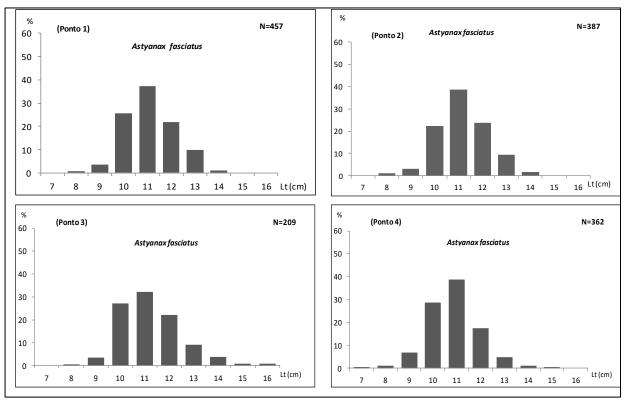


Figura 19. Distribuição de frequência por classe de comprimento para *Astyanax fasciatus*, nos pontos amostrais a montante (#3 e #4) e a jusante (#1 e #2) da PCH Presidente Vargas, nas 19 campanhas realizadas.

Com relação à variação espacial da espécie, as maiores abundâncias ocorreram nos pontos 1 e 4 (Figura 20), enquanto que sazonalmente a espécie foi mais abundante em junho. Tais resultados muito possivelmente indicam que *A. fasciatus*, em virtude do formato do corpo mais alongado, esteja adaptado a habitar ambientes um pouco mais caudalosos que *A. altiparanae*, resultando na sua dominância na bacia, durante as amostragens de junho e setembro de 2016, em que os trechos apresentavam maiores velocidades de corrente.

Nas amostragens de dezembro de 2016, assim como, o verificado para *A. altiparanae*, foi observado um declínio acentuado na abundância da espécie em virtude do baixo nível de água nos pontos de amostragem. Em fevereiro de 2017, as abundâncias foram ainda mais baixas, muito possivelmente em virtude da manutenção da pequena vazão apresentada pelo rio, em conjunto com uma provável competição com *A. altiparanae* que como comentado, se sobressai em ambientes pouco caudalosos. Assim, como o observado para as demais espécies, as amostragens de abril de 2017 não capturaram nenhum indivíduo, ao passo que em julho de 2017, com o retorno do nível de água aos canais, houve um repovoamento do reservatório da PCH, sendo *A. fasciatus* a espécie dominante nas coletas. Em outubro de 2017, foi substituída por *A. altiparanae*, ocupando a segunda posição em número de exemplares capturados, enquanto que em janeiro e abril de 2018, foi a terceira espécie em abundância na baía, sendo superada por *G. knerii* e *A. altiparanae*.

Em agosto e outubro de 2018, novamente se apresentou como a espécie dominante nas coletas, enquanto que em janeiro de 2019 ocupou apenas a terceira posição em abundância. No mês de abril de 2019, apenas um indivíduo de *A. fasciatus* foi coletado nas amostragens, enquanto que em julho e setembro deste ano, caracterizou-se novamente como a espécie dominante nas coletas. Em fevereiro e maio de 2020, ocupou a segunda colocação nas capturas em conjunto com *A. altiparanae*, com 26 e 50 espécimes capturados, respectivamente.

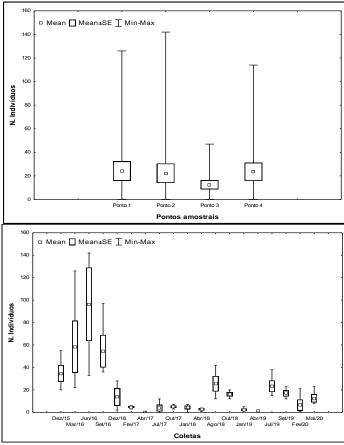


Figura 20. Variação média do número de indivíduos de *Astyanax fasciatus* por ponto amostral (a) e ao longo do gradiente temporal de amostragem (b). O retângulo central indica a média e a caixa representa a variação do erro padrão em torno da média.

Tabela 6 Frequência de ocorrência absoluta (N), Biomassa (g), Comprimento Médio total, Amplitude de Comprimento, Peso Médio total e Amplitude

de Peso, das espécies de peixes capturadas nas áreas a montante e a jusante da PCH Presidente Vargas, nas 19 campanhas amostrais.

— eso, das especies de peixes capturada					. Larg	·		p. Peso
TAXA	N	Biomassa	Larg. Média	<	>	Peso Médio	<	>
Ordem Characiformes								
Família Parodontidae								
Apareiodon piracicabae	8	310,99	14,78 ± 0,94	11,3	18,5	38,87 ± 5,97	18,72	66,52
Família Erythrinidae								
Hoplias malabaricus	4	4439,5	40,30 ± 3,87	35,0	51,5	1109,88 ± 295,79	609,51	1949,61
Família Anostomidae								
Leporinus elongatus	7	778,48	19,93 ± 2,17	11,0	27,5	111,21 ± 32,04	41,41	245,16
Leporinus friderici	8	3787,35	35,93 ± 7,15	12,0	63,0	473,42± 154,36	17,02	1250,23
Leporinus obtusidens	13	409,78	$14,32 \pm 0,61$	11,0	18,1	31,52 ± 3,63	15,70	56,26
Schizodon nasutus	47	7855,61	22,31 ± 1,04	15,0	36,5	167,14 ± 24,95	31,26	524,47
Família Characidae								
Astyanax altiparanae	1184	18964,11	$10,19 \pm 0,03$	6,5	14,5	16,02 ± 0,17	7,35	55,00
Astyanax bockmanni	308	4557,92	$10,01 \pm 0,08$	7,0	14,5	$14,80 \pm 0,41$	4,32	53,62
Astyanax fasciatus	1415	27144,16	$11,44 \pm 0,03$	7,5	16,0	19,18 ± 0,16	7,05	43,01
Astyanax paranae	94	1170,93	9,80 ± 0,09	7,5	12,0	12,46 ± 0,36	8,01	25,00
Brycon nattereri	1	436,33	-	-	-	=	-	-
Galeocharax knerii	360	27785,98	$19,28 \pm 0,24$	10,0	32,0	77,18 ± 3,96	9,55	318,93
Oligosarcus paranensis	61	2003,99	14,91 ± 0,24	10,6	18,3	32,85 ± 0,24	10,80	57,11
Acestrorhynchus lacustris	1	51,12	-	-	-	=	-	-
Família Salmininae								
Salminus hilarii	3	161,61	$18,33 \pm 0,60$	17,5	19,5	53,87 ± 5,19	43,74	60,89
Ordem Siluriformes								
Família Heptapteridae								
Rhamdia quelen	8	2779,92	28,98 ± 3,49	14,0	41,7	347,49 ± 100,66	20,03	832,48
Família Pimelodidae								
Iheringichthys labrosus	45	1157,49	$15,16 \pm 0,41$	10,6	23,0	25,72 ± 2,19	7,33	70,72
Pimelodus maculatus	22	4181,72	24,79 ± 1,91	12,8	45,0	190,08 ± 43,02	22,71	735,62
Pimelodus microstoma	3	407,39	$129,10 \pm 6,71$	11,8	13,5	135,80 ± 118,62	15,39	373,03
Família Loricariidae								
Hypostomus albopunctatus	12	1924,37	$22,05 \pm 2,09$	13,2	33,0	160,36 ± 40,26	24,69	401,63
Hypostomus nigromaculatus	32	7121,61	$27,60 \pm 0,91$	11,2	34,5	222,55 ± 15,64	14,20	402,37
Hypostomus sp.	1	13,72		-	-	=	-	-
Loricaria prolixa	1	210,24	-	-	-	=	-	-
Ordem Gymnotiformes								
Família Sternopygidae								
Eigenmannia virescens	1	18,11	-	-	-	-	-	-
Ordem Perciformes								
Família Cichlidae								
Geophagus brasiliensis	5	247,88	11,78 ± 2,75	7,0	22,5	49,57 ± 36,33	5,41	194,61

Através da análise de cluster aos dados de abundância da ictiofauna, ao longo das 19 amostragens do presente monitoramento, foi possível separar a comunidade de peixes da PCH Presidente Vargas, em três grandes grupos (Figura 21). No grupo I, encontram-se agrupadas as espécies de maior representatividade numérica no presente estudo, composto pelas espécies dominantes e chaves na estruturação da comunidade ictiofaunística, *Astyanax altiparanae e Astyanax fasciatus*, em conjunto com *Astyanax bockmanni* e a Saicanga *Galeocharax knerii*. No grupo II, estiveram presentes as espécies com abundâncias intermediárias, sendo representado por *Schizodon nasutus*, *Oligosarcus paranensis*, *Hypostomus nigromaculatus*, *Astyanax paranae*, e *Iheringichthys labrosus* (Figura 21).

O grupo III foi formado pelas espécies menos frequentes e com baixa expressividade numérica, compreendendo: *Apareiodon piracicabae, Leporinus friderici, Rhamdia quelen, Hypostomus albopunctatus, Leporinus obtusidens, Pimelodus maculatus, Hoplias malabaricus, Geophagus brasiliensis, Pimelodus microstoma e Leporinus elongatus, além de Brycon nattereri, Acestrorhynchus lacustris, Salminus hilarii, Hypostomus sp., Loricaria prolixa e Eigenmannia virescens* (Figura 21). Tais resultados reforçam a existência de relações interespecíficas de competição e segregação de nichos na composição da comunidade de peixes da PCH Presidente Vargas apresentada e amplamente discutida no presente estudo.

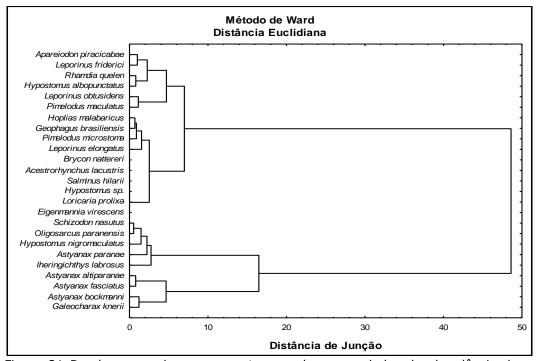


Figura 21 Dendrograma de agrupamento, com base nos dados de abundância das espécies de peixes capturadas nos pontos amostrais a montante (#3 e #4) e a jusante (#1 e #2) da PCH Presidente Vargas, ao longo das 19 amostragens.

Por fim, durante as 19 amostragens para o Programa de Monitoramento da Ictiofauna da PCH Presidente Vargas foi observada a presença da espécie *Brycon nattereri* (Günther, 1864), que se encontra listada como VU (vulnerável) na Lista das Espécies da Fauna Brasileira Ameaçadas de Extinção (MMA, 2008), Lista das Espécies da Fauna Ameaçadas de Extinção no Paraná (CURITIBA, 2006) e nas Instruções Normativas MMA Nº 5/2004/2005 e IN MMA Nº 445 de 17 de dezembro de 2014 (Tabela 7).

Esta espécie já havia sido relatada para a região, nos trabalhos de Shibatta *et al.* (2002), Langeani *et al.* (2007) e Shibatta *et al.* (2007), indicando que apesar dos impactos sofridos ao longo dos trechos do rio Tibagi, algumas áreas ainda se encontram relativamente preservadas. Como no caso do presente estudo, o ponto amostral 4, margeado por uma vegetação ciliar bem preservada, onde foi registrada a presença de *B. nattereri*.

Na 11ª campanha amostral foi registrada a ocorrência da tabarana *Salminus hilarii*, a qual se encontra classificada como quase ameaçada (NT) na lista de Espécies de peixes ameaçadas do Paraná (CURITIBA, 2006).

Tabela 7. Nomenclatura científica e vulgar e *status* de conservação das espécies capturadas no presente estudo, para o Programa de Monitoramento Ambiental da Ictiofauna da PCH Presidente Vargas.

			Status d	e Conservação	0	
TAXA	Nome Vulgar	CURITIBA 2006	MMA (2008)	MMA (2014)	IUCN (2016)	Exótica
Ordem Characiformes						
Família Parodontidae						
Apareiodon piracicabae (Eigenmann, 1907)	canivete	NC	NC	NC	NC	NÃO
Família Erythrinidae						
Hoplias malabaricus (Bloch, 1794)	traíra	NC	NC	NC	NC	NÃO
Família Anostomidae						
Leporinus elongatus Valenciennes, 1849	piapara	NC	NC	NC	NC	NÃO
Leporinus friderici (Bloch, 1794)	piau 3 pintas	NC	NC	NC	NC	NÃO
Leporinus obtusidens (Valenciennes, 1847)	piau	NC	NC	NC	LC	NÃO
Schizodon nasutus Kner, 1859	chimboré	NC	NC	NC	NC	NC
Família Characidae						
Astyanax altiparanae Garutti & Britski, 2000	lambari-de-rabo-amarelo	NC	NC	NC	NC	NÃO
Astyanax bockmanni Vari & Castro, 2007	lambari	NC	NC	NC	NC	NÃO
Astyanax fasciatus (Cuvier, 1819)	lambari-de-rabo-vermelho	NC	NC	NC	NC	NÃO
Astyanax paranae Eigenmann, 1914	lambari	NC	NC	NC	NC	NÃO
Brycon nattereri Günther, 1864	pirapitinga	VU	VU	VU	NC	NÃO
Galeocharax knerii (Steindachner, 1879)	saicanga	NC	NC	NC	NC	NÃO
Oligosarcus paranensis Menezes & Géry, 1983	saicanga	NC	NC	NC	NC	NÃO
Acestrorhynchus lacustris (Lütken, 1875)	bocarra	NC	NC	NC	NC	NÃO
Subfamília Salmininae						
Salminus hilarii (Valenciennes, 1849)	tabarana	NT	NC	NC	NC	NÃO
Ordem Siluriformes						
Família Heptapteridae						
Rhamdia quelen (Quoy & Gaimard, 1824)	bagre, jundiá	NC	NC	NC	NC	NÃO
Família Pimelodidae						
Iheringichthys labrosus (Kröyer, 1874)	mandi-beiçudo	NC	NC	NC	NC	NÃO
Pimelodus maculatus Lacépède, 1803	mandi	NC	NC	NC	NC	NÃO
Pimelodus microstoma Steindachner, 1877	mandi	NC	NC	NC	NC	NÃO
Família Loricariidae						
Hypostomus albopunctatus (Regan, 1908)	cascudo	NC	NC	NC	NC	NÃO
Hypostomus nigromaculatus (Schubart, 1964)	cascudo	NC	NC	NC	NC	NÃO
Hypostomus sp	cascudo	-	-	-	-	-
Loricaria prolixa Isbrücker & Nijssen, 1978	cascudo-chinelo	NC	NC	NC	NC	NÃO

			<i>Status</i> d	e Conservaçã	0	
TAXA	Nome Vulgar	CURITIBA 2006	MMA (2008)	MMA (2014)	IUCN (2016)	Exótica
Ordem Gymnotiformes						
Família Sternopygidae						
Eigenmannia virescens (Valenciennes, 1847)	tuvíra/ituí-transparente	NC	NC	NC	NC	NÃO
Ordem Perciformes						
Família Cichlidae						
Geophagus brasiliensis (Quoy & Gaimard, 1824)	cará/acará	NC	NC	NC	NC	NÃO

5 CONCLUSÕES

As ordens Characiformes e Siluriformes foram dominantes em número de espécies e abundância de exemplares no presente estudo, onde a predominância de Characidae esteve fundamentada na elevada contribuição das espécies *Astyanax fasciatus* e *Astyanax altiparanae*, possivelmente associada à grande capacidade adaptativa das mesmas.

Além destas, foi observada simpatria entre outras duas espécies do gênero *Astyanax*, (*Astyanax bockmanni* e *Astyanax paranae*) com participações distintas ao longo dos pontos amostrais, o que demonstrou as diferentes formas de ocupação ao longo do gradiente amostral, provavelmente em função das estratégias alimentares e utilização do espaço.

A partir das análises das amplitudes de comprimento, bem como, dos comprimentos médios das espécies capturadas, observou-se que a grande maioria dos exemplares apresentou pequeno porte, o que esteve de acordo com o encontrado ao longo dos sistemas de água doce sul-americanos.

Entre os pontos amostrais analisados, o ponto 4, caracterizado por apresentar águas mais calmas, margeado com uma mata ciliar bem preservada, aparentemente tem apresentado melhores condições para o desenvolvimento da assembleia de peixes local, contribuindo com as maiores abundâncias e diversidades de peixes, com quatro espécies exclusivas deste ambiente.

Dentre as espécies de peixes capturadas, foi observada a presença de *Brycon nattereri* (Günther, 1864), que se encontra listada como VU (vulnerável) na Lista das Espécies da Fauna Brasileira Ameaçadas de Extinção, indicando que alguns trechos do rio Tibagi, como por exemplo, o ponto amostral 4 (onde foi encontrada esta espécie), ainda apresentam-se relativamente preservados.

As principais mudanças na comunidade de peixes no presente estudo estiveram relacionadas à alternância entre a dominância das populações de *A. altiparanae* e *A. fasciatus* ao longo das 19 investidas amostrais. O predomínio foi da primeira (*A. altiparanae*) durante as coletas de dezembro de 2015 e redução na época de seca (março de 2016), bem como, em junho e setembro de 2016, devido às elevadas velocidades de corrente, o que esteve de acordo com a biologia da espécie. Apesar da grande capacidade adaptativa, essa espécie não se desenvolve plenamente em ambientes de elevadas correntezas. Tal diminuição, provavelmente tenha disponibilizado um nicho de espaço para

a ocupação de *A. fasciatus* (possível competidora com *A. altiparanae*, pois, geralmente explora os mesmos recursos, bem como, se distribui na mesma faixa da coluna d'água), que apresentou um aumento expressivo na abundância dos exemplares especialmente em junho de 2016.

Considerando a diversidade funcional destas duas espécies, levando em conta a anatomia do corpo, por apresentar um formato fusiforme, *A. fasciatus* caracteriza-se como melhor nadadora do que *A. altiparanae*, que possui o corpo mais alto, o que em caso de competição por espaço, muito provavelmente tenha beneficiado *A. fasciatus*, quando do aumento das velocidades de corrente em junho e setembro de 2016.

Além da alternância entre as populações de *A. fasciatus* e *A. altiparanae*, cabe ressaltar a flutuação dos Siluriformes ao longo do estudo, com destaque para os incrementos observados durante a quinta amostragem (dez/16), onde se observou um aumento na abundância de cascudos da família Loricaridae, muito provavelmente devido ao baixo nível apresentado pelos rios e deslocamento dos Astyanax para regiões mais profundas.

Nas amostragens realizadas em fevereiro de 2017 (sexta campanha) é importante mencionar a elevada participação das espécies carnívoras, com destaque para a saicanga *Galeocharax knerii*, que foi a segunda espécie mais abundante nas coletas, corroborando a importância das relações interespecíficas, especialmente vinculadas à alimentação/predação exercida pelas carnívoras, na estruturação das assembleias ícticas.

As amostragens de abril de 2017, não capturaram exemplares de peixes ao longo dos pontos amostrais, o que esteve relacionado com as atividades de manutenção da PCH Presidente Vargas, uma vez que o nível do rio se apresentava em alguns pontos, completamente sem água. Com o término da manutenção e restabelecimento do nível de água nos meses subsequentes foi observado um repovoamento da ictiofauna (campanha oito), entretanto, as abundâncias, bem como, o número de espécies, riqueza e diversidade foram significativamente mais baixos se comparado com os períodos iniciais de monitoramento, o que apesar de esperado (perante o impacto sofrido na comunidade), possa também estar relacionado com o furto das redes de coleta em dois dias seguidos nos pontos amostrais 3 e 4.

Em outubro de 2017, foram observados incrementos significativos no número e na diversidade de espécies ícticas na PCH, o que em conjunto com a análise da composição específica demonstra uma recuperação da comunidade perante aos impactos provenientes

das atividades de manutenção da PCH, conforme supracitado. As coletas de janeiro e abril de 2018 seguiram esta mesma tendência de recuperação, com pequenos incrementos e oscilações nestes dois parâmetros, ao passo que em agosto de 2018, foi observada uma leve diminuição no número de indivíduos e espécies capturadas, muito possivelmente ao baixo volume do rio durante as amostragens, em virtude das estiagens, voltando a apresentar incrementos em outubro de 2018.

Em janeiro de 2019, novamente o rio apresentava-se com baixa vazão, resultando em uma pequena abundância de peixes, o que foi igualmente observado em abril deste mesmo ano, onde foram capturados apenas 17 exemplares ao longo dos pontos amostrais da PCH Presidente Vargas. Em julho de 2019, foi observado um pequeno aumento, tanto no número de indivíduos capturados, quanto no número de espécies registradas, o qual se manteve constante até maio de 2020, com pequenos incrementos nos índices de diversidade e equitabilidade da comunidade.

De um modo geral, até o presente momento, a comunidade ictiofaunística da Pequena Central Hidrelétrica de Presidente Vargas, parece ser moldada principalmente pela vazão do rio, seja de forma natural (regime de secas e inundações) ou antrópica (abertura das barragens, bem como, atividades de manutenção). Tais flutuações têm contribuído de forma direta no deslocamento das populações de peixes, nas relações interespecíficas e estruturação da comunidade, como demonstrado ao longo deste estudo.

Por fim, a composição específica observada no presente estudo, com 25 espécies levantadas para um trecho local da região média do rio Tibagi, parece se enquadrar no padrão de assembleias locais de peixes, dos sistemas de água doce neotropicais. Contudo, a continuidade das amostragens, provavelmente contribuirá para uma descrição mais aproximada da composição da comunidade de peixes na região de estudo, que segundo pesquisadores renomados da região, ainda precisa ser exaustivamente explorada, pois, é comum o aparecimento de novas espécies (corroborado com este estudo/monitoramento, visto a ocorrência da tabarana, *Salminus hilarii*, na 11ª e da bocarra, *Acestrorhynchus lacustris*, na 16ª coleta). Além disto, tais estudiosos são categóricos ao afirmar que para se avaliar e propor medidas de manejo eficazes para os possíveis impactos das atividades do setor elétrico sobre as diferente populações de peixes na bacia, é fundamental que se conheça a distribuição, além dos padrões de utilização dos diferentes ambientes ao longo da bacia, reforçando a importância na continuidade dos estudos na região.

6 REFERÊNCIAS BIBLIOGRÁFICAS

ARAÚJO-LIMA, C. A. R., AGOSTINHO, A. A. & FABRÉ, N. N. 1995. Trophic aspects of fish communities in Brazilian rivers and reservois. *In* TUNDISI, J. G.; BICUDO, C. E. M.; MATSUMURA-TUNDISI, T (Ed). Limnology in Brazil. Rio de Janeiro: ABC/SBL. P 105-136.

AZPELICUETA, M. de las. M. & BRITSKI, H. A. 2012. *Iheringichthys syi* (Siluriformes: Pimelodidae), a new pimelodidae species from upper Paraná basin, Brazil. Neotropical Ichthyology, 10(1): 45-52.

BAUMGARTNER, G., PAVANELLI, C. S., BAUMGARTNER, D., BIFI, A. G., DEBONA, T. & FRANA, V. A. 2012. Peixes do baixo rio Iguaçu [online]. Maringá: Eduem, 2012. 203 p. ISBN 978-85-7628-586-1. Available from SciELO Books http://books.scielo.org.

BENNEMANN, S. T., SILVA-SOUZA, A. T. & ROCHA, G. R. A. 1995. Composicion ictiofaunistica en cinco localidades de la cuenca del rio Tibagi PR - Brasil. Interciencia, 20: 7-13.

BENNEMANN, S. T., SHIBATTA, O. A. & GARAVELLO, J. C. 2000. Peixes do rio Tibagi: uma abordagem ecológica. Londrina, Ed UEL. 62p.

BENNEMANN, S. T. & SHIBATTA, O. A. 2002. Dinâmica de uma assembléia de peixes do rio Tibagi. *In:* MEDRI, M. E.; BIANCHINI, E.; SHIBATTA, O. A. & PIMENTA, J. A. Eds. A bacia do rio Tibagi. Londrina, Universidade Estadual de Londrina. p. 433-442.

BENNEMANN, S. T., GEALH, A. M., ORSI, M. L. & SOUZA, L. M. 2005. Ocorrência e ecologia trófica de quatro espécies de *Astyanax* (Characidae) em diferentes rios da bacia do rio Tibagi, Paraná, Brasil. Iheringia, Sér. Zool., Porto Alegre, 95(3): 247-254.

BONETTO, A. A. 1986. The Paraná river system. *In* The ecology of river systems (B.R. Davies & K.F. Walker, eds.). Dr. W. Junk Publishers, Dordrecht, p. 541-555.

BRITO, S. G. C., SIROL, R. N.; VIANNA, N. C., JARDIM, M. S., dos SANTOS, J. C. & PELISARI, E. 2008. Peixes do rio Paranapanema. Editora Horizonte, p. 120.

BRITSKI, H. A. 1972. Peixes de água doce do estado de São Paulo. *In:* Comissão Internacional da Bacia Paraná – Paraguai. Poluição e piscicultura. São Paulo, Faculdade de Saúde Pública da USP e Instituto de Pesca. p.79-108.

BRITSKI, H. A., BIRINDELLI, J. L. O., GARAVELLO, J. C. A new species of *Leporinus agassiz*, 1829 from the upper Rio Paraná basin (Characiformes, Anostomidae) with redescription of *L. elongates* Valenciennes, 1850 and *L. obtusidens* (Valenciennes, 1837). Papéis Avulsos de Zoologia. 52(37): 441-475, 2012.

BUCKUP, P.A., MENEZES, N. A. & GHAZZI, M. S. 2007. Catálogo das espécies de peixes de água doce do Brasil. Rio de Janeiro, Museu Nacional.

CASATTI, L., LANGEANI, F. & CASTRO, R. M. C. 2001. Peixes de riacho do Parque Estadual Morro do Diabo, bacia do Alto Rio Paraná, SP. Biota Neotropica 1: 1-15

CASTRO, R. M. C. 1999. Evolução da ictiofauna de riachos sul-americanos: padrões gerais e possíveis processos causais. In Ecologia de peixes de riachos (E.P. CARAMASCHI, R. MAZZONI & P. R. PERES-NETO, Eds.). Série Oecologia Brasiliensis, PPGE-UFRJ, Rio de Janeiro, p.139-155.

CASTRO, A. C. L. 2001. Diversidade da assembléia de peixes em Igarapés do estuário do rio Paciência (MA – Brasil). Atlântica, Rio Grande, 23: 39-46.

CASTRO, R. M. C., CASATTI, L., SANTOS, H. F., FERREIRA, K. M., RIBEIRO, A.C., BENINE, R. C., DARDIS, G. Z. P., MELO, A. L. A., STOPIGLIA, ABREU, T. X., BOCKMANN, F. A., CARVALHO, M., GIBRAN, F. Z. & LIMA, F. C. T. 2003. Estrutura e composição da ictiofauna de riachos do Rio Paranapanema, sudeste e sul do Brasil. Biota Neotropica 3:1-31.

COX, C. B. & MOORE, P. D. 2000. Biogeography, an ecological and evolutionary approach. Blackwell Science, London.

CURITIBA, 2006. Fauna do Paraná em Extinção. Instituto Ambiental do Paraná, 272p.

DE FRANÇA, V. 2002. O rio Tibagi no contexto hidrográfico parananense. *In* A bacia do rio Tibagi (M.E. Medri, E. Bianchini, O.A. Shibatta & J.A. Pimenta, eds.). M. E. Medri, Londrina, p.45-61.

FERREIRA, E. J. G. 1993. Composição, distribuição e aspectos ecológicos da ictiofauna de um trecho do rio Trombetas, na área de influência da futura UHE Cachoeira Porteira, Estado do Pará, Brasil. Acta Amazonica 23(Supl.1/4): 1-88.

GARAVELLO, J. C.; BRITSKI, H. A. & ZAWADZKI, C. H. 2012. The cascudos of genus *Hypostomus* Lacépéde (Ostariophysi: Loricariidae) from the rio Iguaçu basin. Neotropical Ichthyology, 10(2): 263-283.

HOFFMANN, A. C., ORSI, M. L., SHIBATTA, O. A. 2005. Diversidade de peixes do reservatório da UHE Escola Engenharia Mackenzie (Capivara), rio Paranapanema, bacia do alto rio Paraná, Brasil e a importância dos grandes tributários na sua manutenção. Iheringia, Série Zoologia, Porto Alegre, 95:3 319-325.

HOFFMANN, A. C., NASCIMENTO, R. H. C. & SHIBATTA, O. A. 2015. Fish fauna from tributaries throughout the Tibagi River basin, upper Paraná basin, Brazil. Check List 11(6): 1815, doi: http://dx.doi.org/10.15560/11.6.1815 ISSN 1809-127X ©.

IUCN, 2016. http://www.iucnredlist.org/. Acesso em 20 de janeiro de 2016.

INGENITO, L.F. S., DUBOC, L. F. & ABILHOA, V. 2004. Contribuição ao conhecimento da ictiofaunada bacia do alto rio Iguaçu, Paraná, Brasil. Arquivos de Ciências Veterinárias e Zoologia da UNIPAR, Umuarama,7(1):1 23-36.

LANGEANI, F., CASTRO, R. M. C., OYAKAWA, O. T., SHIBATTA, O. A., PAVANELLI, C. S. & CASATTI, L. 2007. Diversidade da ictiofauna do Alto rio Paraná: composição atual e perspectivas futuras. Biota Neotropica. 7(3): http://www.biotaneotropica.org.br/v7n3/pt/abstract?article+bn03407032007

LOWE-McCONNELL, R. H. 1999. Estudos ecológicos de comunidades de peixes tropicais. Editora da Universidade de São Paulo, São Paulo, Brasil, 534 p.

LYONS, J., NAVARRO-PÉREZ, S., COCHRAN, P. A., SANTANA, C. & GUZMÁN-ARROYO, M. 1995. Index of biotic integrity based on fish assemblages for the conservation of streams and rivers in west-central México. Cons. Biol. 9(3): 569-584.

MARCENIUK, A. P., HILSDORF, A. W. da SILVA. & LANGEANI, F. 2011. A ictiofauna de cabeceiras do rio Tietê, São Paulo, Brasil. Biota Neotropica. 11(3): http://www.biotaneotropica.org.br/v11n3/en/abstract?inventory+bn00311032011.

MATTHEWS, W.J. 1998. Patterns in freshwater fish ecology. Thomson Publ. Chapman & Hall, New York.

NELSON, J. S. 2006. Fishes of the world. John Wiley & Sons, New York.

ORSI, M. L.; CARVALHO, E. D. & FORESTI, F. 2004. Biologia populacional de *Astyanax altiparanae* Garutti & Britski 2000 (Teleostei, Characidae) do médio rio Paranapanema, Paraná, Brasil. Revista Brasileira de Zoologia 21(2):207-218.

PELICICE, F. M., AGOSTINHO, A. A. & GOMES, L. C. 2005. Biodiversidade e conservação de peixes na planície de inundação do alto rio Paraná. Caderno de Biodiversidade. 5(1): 34-44.

PEREIRA, M. C. B. & SCROCCARO, J. S. 2010. Bacias Hidrográficas do Paraná: Série Histórica. SEMA-PARANÁ.

RAIO, C. B. & BENNEMANN, S. T. 2010. A ictiofauna da bacia do rio Tibagi e o projeto de construção da UHE Mauá, Paraná, Brasil. Semina: Ciências Biológicas da Saúde, Londrina. 31(1): 15-20.

REIS, R. E., KULLANDER, S. O. & FERRARIS-JR., C. J. 2003. Check list of the freshwater fishes of South and Central America. EDIPUCRS, Porto Alegre.

RIBEIRO, F.R.V. & LUCENA, C.A.S. 2007. *Pimelodus microstoma* Steindachner, 1977, a valid species of pimelodid catfish (Siluriformes: Pimelodidae) from the upper rio Paraná drainage. Neotropical Ichthyology 5(1):75-78.

ROSA, R. S. & LIMA, F, C. T. 2008. Os Peixes Brasileiros Ameaçados de Extinção. p. 278.

SANT'ANNA, J. F. M., ALMEIDA, M. C., VICARI, M. R., SHIBATTA, O. A. & ARTONI, R. F. 2006. Levantamento rápido de peixes em uma lagoa marginal do rio Imbituva na bacia do alto rio Tibagi, Paraná, Brasil. Biologia e Saúde, Ponta Grossa. 12 (1): 39-46.

SCHAEFER, S. A. 1998. Conflict and resolution: impact of new taxa on phylogenetic studies of the neotropical cascudinhos (Siluroidei: Loricariidae). In: Malabarba LR, Reis RE, Vari RP, Lucena ZMS, Lucena CAS (ed). Phylogeny and Classification of Neotropical Fishes. Porto Alegre, EDIPUCRS, p: 375-400.

SHIBATTA, O. A.; ORSI, M. L.; BENNEMANN, S. T. & SILVA-SOUZA, A. 2002. Diversidade e distribuição de peixes na bacia do rio Tibagi. In: MEDRI, M. E.; BIANCHINI, E.; SHIBATTA,

O. A. & PIMENTA, J. A. 2002. A bacia do rio Tibagi. Londrina, Universidade Estadual de Londrina. p 403-423.

SHIBATTA, O. A.; GEALH, A. M. & BENNEMANN, S. T. 2007. Ictiofauna dos trechos alto e médio da bacia do rio Tibagi, Paraná, Brasil. Biota Neotropical. 7(2): 125-134.

VARI, R. P. & CASTRO, R. M. C. 2007. New Species of *Astyanax* (Ostariophysi: Characiformes: Characidae) from the Upper Rio Paraná System, Brazil. Copeia. (1): 150-162. http://dx.doi.org/10.1643/0045-8511(2007)7[150:NSOAOC]2.0.CO;2

VAZZOLER, A. E. A. M. 1996. Biologia de reprodução de peixes teleósteos: teoria e prática. Maringá, SBI/EDUEM, 129p.

YÁÑEZ-ARANCIBIA, A. 1985 The estuarine nekton: why and how an ecological monograph. Preface. In: Yáñez-Arancibia, A. Fish community ecology in estuaries and coastal lagoons: towards an ecosystem integration. Mexico: UNAM, p. 1-8.

Klabin Celulose S.A.

Monitoramento da Ictiofauna da Pequena Central Hidrelétrica Presidente Vargas, Município de Telêmaco Borba, Paraná.

SUMÁRIO

1.	EQUIPE TÉCNICA	1-6
2.	INTRODUÇÃO	2-7
3.	MATERIAIS E MÉTODOS	3-8
3.1	Área de estudo	3-8
3.2	Trabalho de Campo	3-10
3.2	Trabalho de Laboratório	3-15
3.3	Análise dos dados	3-15
4	RESULTADOS E DISCUSSÃO	3-16
5	CONCLUSÕES	3-49
6	REFERÊNCIAS BIBLIOGRÁFICAS	3-52

LISTA DE FIGURAS

Figura 1. Localização da PCH Presidente Vargas, em relação ao rio Tibagi e as cidades de
Ortigueira e Telêmaco Borba
Figura 2. Localização dos pontos de coleta da ictiofauna do rio Tibagi - Programa de
Monitoramento da Ictiofauna da PCH Presidente Vagas 3-11
Figura 3. Caracterização fotográfica dos pontos de coleta da ictiofauna do rio Tibagi -
Programa de Monitoramento da Ictiofauna da PCH Presidente Vagas (a) $\#1$, (b) $\#2$, (c) $\#3$
e (d) #4 3-12
Figura 4. Demonstração das amostragens com redes de espera para coleta da ictiofauna,
no rio Tibagi (a, b) e a despesca feita pela equipe de pesquisadores (c e d) 3-13
Figura 5. Demonstração das amostragens com tarrafa para coleta da ictiofauna, no rio
Tibagi 3-14
Figura 6. Demonstração das amostragens com covos para coleta da ictiofauna, no rio
Tibagi 3-14
Figura 7. Demonstração das amostragens com Kicknet para coleta da ictiofauna, no rio
Tibagi
Figura 8. Registro fotográfico dos exemplares capturados: (a) Apareiodon piracicabae; (b)
Hoplias malabaricus; (c) Leporinus elongatus; (d) Leporinus friderici; (e) Leporinus
obtusidens; (f) Schizodon nasutus; (g) Brycon nattereri; (h) Astyanax altiparanae 3-22
Figura 9. Registro fotográfico dos exemplares capturados: (a) Astyanax bockmanni; (b)
Astyanax fasciatus; (c) Astyanax paranae; (d) Galeocharax knerii; (e) Oligosarcus
paranensis; (f) Rhamdia quelen; (g) Iheringichthys labrosus e (h) Pimelodus maculatus.
Figura 10. Registro fotográfico dos exemplares capturados: (a) Pimelodus microstoma; (b)
Hypostomus albopunctatus; (c) Hypostomus nigromaculatus; (d) Hypostomus sp; (e)
Loricaria prolixa; (f) Eigenmannia virescens, (g) Geophagus brasiliensis e (h) Salminus
hilarii
Figura 11 Registro fotográfico de exemplar capturado: (a) Acestrorhynchus lacustris. 3-25
Figura 12. Contribuição percentual em número de indivíduos para as principais famílias de
peixes, capturadas nas áreas a montante e a jusante da PCH Presidente Vargas, nas 20
campanhas realizadas 3-25
Figura 13. Contribuição percentual em número de indivíduos para as principais espécies de
peixes, capturadas nas áreas a montante e a jusante da PCH Presidente Vargas, durante
o período de estudo 3-27
Figura 14. Variação média do número de indivíduos (a) e riqueza de espécies de peixes
(b), nos pontos amostrais a montante (#3 e #4) e a jusante (#1 e #2) da PCH Presidente

Vargas, nas 20 campanhas realizadas. O retângulo dentral indica a média e a caixa
representa a variação do erro padrão em torno da média
Figura 15. Contribuição percentual em número de indivíduos para as principais espécies de
peixes, capturadas nas áreas a montante e a jusante da PCH Presidente Vargas, nas
amostragens de dezembro de 2015 (a), março (b), junho (c) setembro (d) e dezembro (e)
de 2016; fevereiro (f), julho (g) e outubro de 2017 (h); janeiro (i), abril (j), agosto (k) e
outubro (I) de 2018; janeiro (m), abril (n), julho (o) e setembro (p) de 2019; fevereiro
(q), maio (r) e agosto (s) de 2020
Figura 16. Contribuição percentual em número de indivíduos para as principais espécies de
peixes, capturadas nas áreas a montante e a jusante da PCH Presidente Vargas, nas
amostragens de agosto (s) de 2020
Figura 17. Variação média do número de indivíduos (a), número de espécies de peixes (b),
diversidade (c) e equitabilidade (d), nas áreas a montante e a jusante da PCH Presidente
Vargas, nas 20 campanhas realizadas. O retângulo dentral indica a média e a caixa
representa a variação do erro padrão em torno da média
Figura 18. Distribuição de frequência por classe de comprimento para Astyanax
altiparanae, nos pontos amostrais a montante (#3 e #4) e a jusante (#1 e #2) da PCH
Presidente Vargas, nas 20 campanhas realizadas 3-40
Figura 19. Variação média do número de indivíduos de Astyanax altiparanae, por ponto
amostral (a) e ao longo do gradiente temporal de amostragem (b). O retângulo central
indica a média e a caixa representa a variação do erro padrão em torno da média 3-41
Figura 20. Distribuição de frequência por classe de comprimento para Astyanax fasciatus,
nos pontos amostrais a montante (#3 e #4) e a jusante (#1 e #2) da PCH Presidente
Vargas, nas 20 campanhas realizadas 3-43
Figura 21. Variação média do número de indivíduos de Astyanax fasciatus por ponto
amostral (a) e ao longo do gradiente temporal de amostragem (b). O retângulo central
indica a média e a caixa representa a variação do erro padrão em torno da média 3-44
Figura 22. Dendrograma de agrupamento, com base nos dados de abundância das espécies
de peixes capturadas nos pontos amostrais a montante (#3 e #4) e a jusante (#1 e #2)
da PCH Presidente Vargas, ao longo das 20 amostragens 3-46

LISTA DE TABELAS

Tabela 1. Coordenadas UTM e caracterização dos pontos de amostragem da Ictiofauna da
PCH Presidente Vargas 3-12
Tabela 2. Relação das espécies de peixes e suas respectivas frequências em número, nas
áreas a montante e a jusante da PCH Presidente Vargas, durante as campanhas de
dezembro de 2015 (D), março (M), junho (J), setembro (S) e dezembro (D) de 2016 3 -
17
Tabela 3. Relação das espécies de peixes e suas respectivas frequências em número, nas
áreas a montante e a jusante da PCH Presidente Vargas, durante as campanhas de
fevereiro (F), abril (A), julho (J) e outubro (O) de 2017; janeiro (J), abril (A), agosto (A) e
outubro (O) de 2018
Tabela 4. Relação das espécies de peixes e suas respectivas frequências em número, nas
áreas a montante e a jusante da PCH Presidente Vargas, durante as campanhas de janeiro
(J), abril (A), julho (J) e setembro (S) de 2019; fevereiro (F), maio (M) e agosto (A) de
2020
Tabela 5. Relação das espécies de peixes e suas respectivas frequências em número, por
petrecho amostral, nas áreas a montante e a jusante da PCH Presidente Vargas, durante
as 20 campanhas realizadas
Tabela 6. Frequência de ocorrência absoluta (N), Biomassa (g), Comprimento Médio total,
Amplitude de Comprimento, Peso Médio total e Amplitude de Peso, das espécies de peixes
capturadas nas áreas a montante e a jusante da PCH Presidente Vargas, nas 20 campanhas
amostrais
Tabela 7. Nomenclatura científica e vulgar e status de conservação das espécies capturadas
no presente estudo, para o Programa de Monitoramento Ambiental da Ictiofauna da PCH
Presidente Vargas

1. EQUIPE TÉCNICA

Nome	Formação	Área de atuação	Registro IBAMA	Registro Profissional
Josiane Rovedder, MSc.	Bióloga	Responsável Técnica, Coordenadora Geral e Geoprocessamento	355459	CRBIO 45049/03-D
Martin Homelchin	Eng ^o Ambiental	Coleta e Logística	1509629	CREA-SC 079803-6
Felipe Freitas Junior, MSc.	Oceanógrafo	Responsável pela Ictiofauna	2253655	AOCEANO 2224
Juliano Cesar Hillesheim	Biólogo	Responsável pela Ictiofauna	501518	CRBIO 53781-03D

2. INTRODUÇÃO

Atualmente são conhecidas 1,8 milhão de espécies de organismos vivos (COX & MOORE, 2000), dos quais aproximadamente 55.000 são vertebrados, e dentre estes, cerca de 28.000 são peixes (NELSON, 2006). A maior parte dessa riqueza e diversidade se encontra em águas tropicais (LOWE-MACCONNELL, 1999), especialmente em águas doces neotropicais, habitadas por algo estimado em 5.000 espécies válidas de peixes, podendo chegar a 8.000 se inclusas as novas espécies já reconhecidas por especialistas, porém ainda não descritas na literatura científica (SCHAEFER, 1998 e REIS *et al.* 2003). Grande parte destas espécies ocorre no Brasil, para onde foram registradas 2.587 espécies de peixes (BUCKP *et al.*, 2007), sendo que para a Bacia Hidrográfica do rio Paraná são descritas aproximadamente 600 espécies de peixes (BONETTO, 1986).

Os peixes constituem umas das principais razões do interesse do homem pelo estudo de ecossistemas aquáticos. Destacam-se entre os principais recursos potencialmente exploráveis nestes ambientes, pelo expressivo suprimento de proteínas e pela notável biomassa disponível, variando sua composição e abundância relativa em função das características hidrológicas, de acordo com a localidade e a variação sazonal (CASTRO, 2001). Além disto, desempenham um importante papel ecológico, transformando o potencial energético dos detritos ao conduzir a energia para níveis tróficos superiores (YAÑEZ-ARANCIBIA, 1985). Podem ainda ser utilizados como indicadores de qualidade ambiental, como sugerido por Lyons *et al.* (1995), onde riachos com boas condições de integridade tendem a ser ocupados por espécies de peixes nativas com várias classes de tamanho e estrutura trófica balanceada, com desaparecimento das espécies mais sensíveis e alteração nesta estrutura na medida em que a influência antrópica aumenta.

O rio Tibagi, no qual está inserida a Pequena Central Hidrelétrica Presidente Vargas, possui 550 quilômetros de extensão com cerca de 90 saltos e cachoeiras, tendo sua nascente localizada na Serra das Almas entre Ponta Grossa e Palmeira, a 1.100 metros de altitude, desaguando no reservatório da Usina Hidrelétrica de Capivara, no rio Paranapanema, a 298 m de altitude (PEREIRA & SCROCCARO, 2010). É considerada a terceira maior bacia do Estado do Paraná e o maior afluente paranaense do rio Paranapanema, abrangendo ao longo de sua extensão, uma grande diversidade de ambientes sob matriz de florestas (Ombrófila Mista e Estacional Semidecidual), intercaladas com encraves de savanas (Cerrado) e estepes (Campos) que se manifestam de acordo com as gradações altitudinal e orográfica (DE FRANÇA, 2002).

Segundo Raio e Bennemann (2010), o rio Tibagi é um dos poucos da região que vêm sendo estudado desde a década de 80, e apesar de apresentar uma elevada diversidade de peixes, vem sendo exposto a diversos impactos antrópicos ao longo de sua extensão (especialmente relacionados à construção de empreendimentos do setor elétrico), resultando em uma diminuição na abundância de peixes. Dados históricos revelam que durante as primeiras incursões a campo para caracterizar a ictiofauna deste rio, foram observadas 69 espécies de peixes (BENNEMANN *et al.*, 1995). Estudos complementares ao longo de seus afluentes e subafluentes vêm demonstrando um incremento no conhecimento da ictiofauna local, sendo catalogadas 110 espécies de peixes nos trabalhos de Shibatta *et al.* (2002), alcançando 151 espécies no estudo de Raio e Bennemann (2010).

Considerando a importância ecológica e econômica (pesca artesanal e recreacional) da ictiofauna, bem como a questão emblemática da instalação de empreendimentos do setor elétrico, com possíveis interferências nestas comunidades faunísticas, o presente trabalho teve como objetivo identificar e quantificar as espécies de peixes presentes nas regiões à jusante e a montante da barragem da Pequena Central Hidrelétrica – PCH Presidente Vargas, durante 20 as campanhas trimestrais realizadas de dezembro de 2015 a agosto de 2020. Os resultados obtidos foram confrontados com o conhecimento técnico-científico disponível para a região comparando a informação obtida com dados pretéritos.

3. MATERIAIS E MÉTODOS

3.1 Área de estudo

A Pequena Central Hidrelétrica Presidente Vargas está localizada no rio Tibagi, na divisa dos municípios de Telêmaco Borba e Ortigueira (Figura 1) Foi licenciada com objetivo de atender às necessidades das indústrias da Klabin e de alguns núcleos habitacionais da região, como Lagoa e Harmonia, na Fazenda Monte Alegre. O reservatório da PCH possui uma área equivalente a 7,64 hectares, limitada a norte pela sua barragem e a sul pela barragem da Usina Hidrelétrica Mauá. A bacia hidrográfica que drena diretamente para o reservatório da PCH Presidente Vargas corresponde a uma área de 351 hectares, algo em torno de 0,014% da bacia do rio Tibagi.

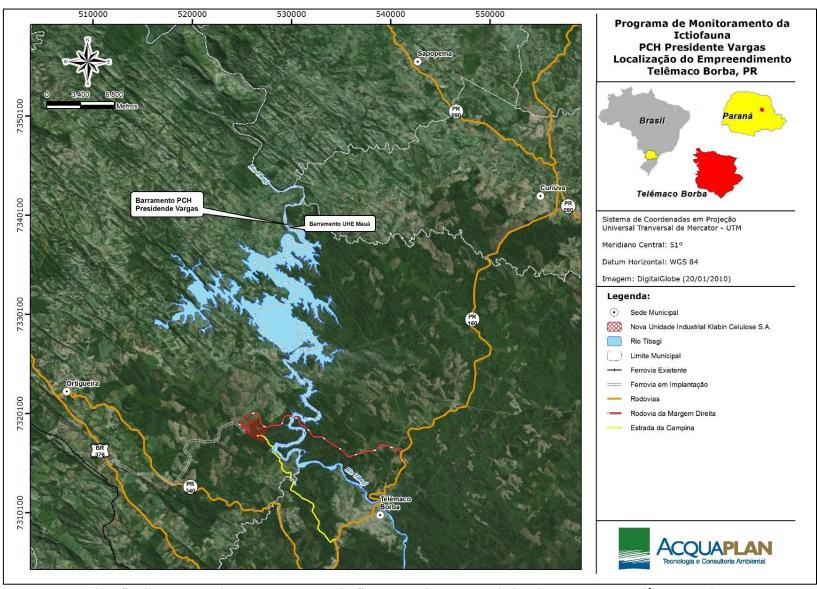


Figura 1. Localização da PCH Presidente Vargas, em relação ao rio Tibagi e as cidades de Ortigueira e Telêmaco Borba.

3.2 Trabalho de Campo

O presente relatório contempla 20 amostragens trimestrais, para o monitoramento da ictiofauna nos pontos a montante (# 3 e #4) e a jusante (# 1 e # 2) da barragem da PCH Presidente Vargas (Tabela 1, Figura 2 e Figura 3). As coletas foram realizadas entre os dias 16 a 18 de dezembro de 2015 (primeira coleta), 19 a 21 de março de 2016 (segunda coleta), 25 a 27 de junho de 2016 (terceira coleta), 19 a 21 de setembro de 2016 (quarta coleta), 10 a 12 de dezembro de 2016 (quinta coleta), 23 a 25 de fevereiro de 2017 (sexta coleta), 19 a 21 de abril de 2017 (sétima coleta), 29 a 31 de julho de 2017 (oitava coleta), 28 a 30 de outubro de 2017 (nona coleta), 20 a 22 de janeiro de 2018 (décima coleta), 23 a 25 de abril de 2018 (décima primeira coleta), 15 a 17 de agosto de 2018 (décima segunda coleta), 24 a 26 de outubro de 2018 (décima terceira coleta), 31 de janeiro a 02 de fevereiro de 2019 (décima quarta coleta), 24 a 26 de abril de 2019 (décima quinta coleta), 02 a 04 de julho de 2019 (décima sexta coleta), 24 a 26 de setembro de 2019 (décima sétima coleta), 10 a 12 de fevereiro de 2020 (décima oitava coleta), 12 a 14 de maio de 2020 (décima nona coleta) e 29 a 31 de agosto de 2020 (vigésima coleta), com auxílio de redes de espera, tarrafas, covos e kicknet, nas áreas marginais dos pontos amostrais (Figura 4 e Figura 7).

Devido à elevada vazão da água, não foi possível realizar as coletas no ponto amostral 3, no período de 25 a 27 de junho de 2016. Na quarta coleta, também não foi amostrado no dia 21 de setembro de 2016, em todos os pontos amostrais, em decorrência da abertura das comportas, o que ocasionou o carreamento das redes utilizadas na amostragem. Por outro lado, para a sétima amostragem (19 a 21 de abril de 2017), não foi possível a captura de exemplares ao longo dos pontos amostrais, em virtude da atividade de manutenção da PCH Presidente Vargas, onde o reservatório foi abaixado para o leito original do rio, deixando o canal de fuga completamente sem água. Na oitava campanha, no segundo e terceiro dia de amostragens (dias 30 e 31 de julho de 2017), foram furtadas as redes de espera nos pontos amostrais #03 e #04.

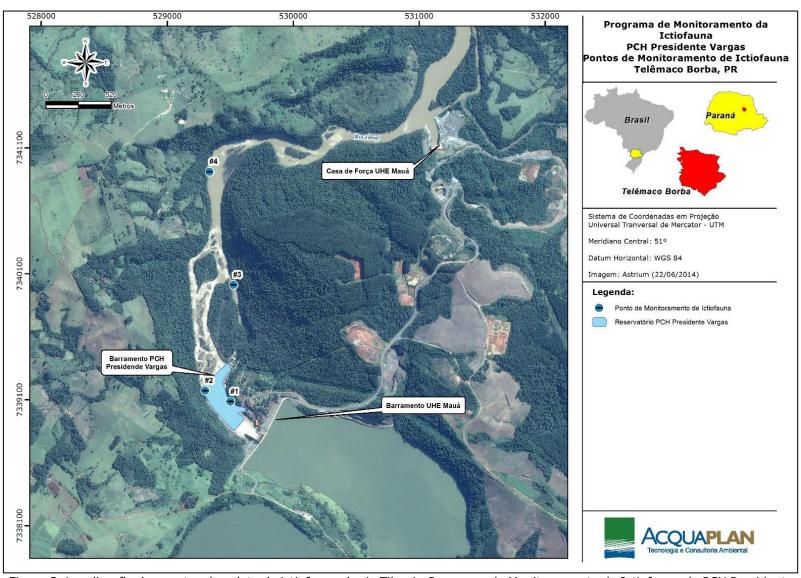


Figura 2. Localização dos pontos de coleta da ictiofauna do rio Tibagi - Programa de Monitoramento da Ictiofauna da PCH Presidente Vagas.

Tabela 1. Coordenadas UTM e caracterização dos pontos de amostragem da Ictiofauna da PCH Presidente Vargas.

Presidente		664 886	
Ponto	UTM WG	<u>584 225</u>	Caracterização dos Pontos amostrais
1 0110	X	Υ	Caracterização dos i ontos amostrais
#1	529503,5	7339085	Ponto mais próximo a PCH, com profundidade entre 2 a 3 metros, fundo rochoso, bem próximo a corredeiras, entretanto as amostragens foram realizadas num trecho da margem com característica mais próxima de um rio semi-lótico, margeada por vegetação de médio e grande porte.
#2	529301,9	7339171	Profundidade de 3 metros, com fundo mais arenoso, margeada por vegetação de médio e grande porte. Coletas realizadas na margem, porém com velocidade de corrente superior ao ponto 1.
#3	529526,5	7340012	Profundidade entre 2 a 3 metros, com substrato rochoso e elevada velocidade de água, com características lóticas (corredeira).
#4	529336,4	7340911	Ponto mais distante da PCH, e com águas mais calmas (características semli-lóticas), profundidade entre 1,5 a 3 metros, com substrato arenoso, margeado por mata ciliar bem preservada e vegetação de médio a grande porte.

Figura 3. Caracterização fotográfica dos pontos de coleta da ictiofauna do rio Tibagi - Programa de Monitoramento da Ictiofauna da PCH Presidente Vagas (a) #1, (b) #2, (c) #3 e (d) #4.

Para a captura dos exemplares da ictiofauna foram armadas três redes de espera, com malhas de 4 cm, 8 cm e 14 cm entre nós opostos, em cada um dos quatro pontos

amostrais, totalizando 12 redes, as quais permaneceram submersas por um período de 72 h, com intervalo de 24 horas entre as despescas (Figura 4a, b, c e d).

Figura 4. Demonstração das amostragens com redes de espera para coleta da ictiofauna, no rio Tibagi (a, b) e a despesca feita pela equipe de pesquisadores (c e d).

Foram ainda realizados a cada amostragem 40 lances de tarrafa (malha de 1,5 cm ente nós opostos), sendo 10 em cada ponto amostral (Figura 5) bem como, armado uma armadilha tipo covo para captura de peixes (Figura 6), em cada ponto (4 no total), durante um período de 12 horas, com intervalo de seis horas entre as revisões e realizados lances com o kicknet (Figura 7) durante 15 minutos em cada ponto de amostragem.

Os peixes capturados foram então acondicionados em sacos plásticos devidamente etiquetados por ponto amostral, fixados em solução de formalina a 10% e posteriormente transportados ao laboratório.

Figura 5. Demonstração das amostragens com tarrafa para coleta da ictiofauna, no rio Tibagi.

Figura 6. Demonstração das amostragens com covos para coleta da ictiofauna, no rio Tibagi.

Figura 7. Demonstração das amostragens com Kicknet para coleta da ictiofauna, no rio Tibagi.

3.2 Trabalho de Laboratório

Em laboratório, os peixes foram identificados ao menor nível taxonômico possível utilizando guias de identificação especializados, onde foi registrado o número de exemplares e realizada a biometria, em que foram mensurados o comprimento total (Lt) em centímetros, obtido entre a ponto do focinho até a extremidade da nadadeira caudal e o peso total (Wt) em gramas. Cada indivíduo foi também fotografado.

Todas as espécies coletadas foram classificadas com relação ao seu grau de ameaça, consultando a Lista das Espécies da Fauna Brasileira Ameaçadas de Extinção (ROSA & LIMA, 2008), Lista das Espécies da Fauna Ameaçadas de Extinção no Paraná (CURITIBA, 2006) e União Internacional de Conservação da Natureza – IUCN (IUCN, 2016).

A classificação taxonômica, nomenclatura científica e popular seguiu os trabalhos de Casatti et al. (2001), Castro et al. (2003), Shibatta et al. (2002, 2007), Ingenito et al. (2004), Vari & Castro, (2007) Ribeiro & Lucena, (2007), Brito et al. (2008), Marceniuk et al. (2011), Britski et al. (2012), Azpelicueta & Britski (2012), Baumgartner et al. (2012), Garavello et al. (2012) e Hoffmann et al. (2015).

3.3 Análise dos dados

Os dados obtidos foram tabelados no programa Excel 2007, sendo confeccionada uma tabela com a abundância de organismos capturados durante o estudo. A medida de abundância foi considerada como o número total de peixes coletados em cada ponto amostral.

Para a análise da diversidade específica foram utilizados os Índices de Shannon-Wiener (H'), dado pela equação:

$$H' = -\sum_{i=1}^{S} (pi) \ln(pi)$$

Para o cálculo da equitabilidade foi utilizado o Índice de Pielou (J'), dado por:

$$J' = \frac{H'}{\ln(S)}$$

A riqueza de espécies foi calculada através do Índice de Margalef:

$$d = \frac{(S-1)}{\ln(N)}$$

Onde S é o número de espécies, n é o número total de indivíduos e ni é o número de indivíduos da espécie i.

A partir dos dados de comprimento total (Lt) foram confeccionados gráficos com as distribuições de frequência por classe de comprimento total, a fim de se caracterizar a estrutura populacional das espécies dominantes.

4 RESULTADOS E DISCUSSÃO

Durante o período de dezembro de 2015 a agosto de 2020, foi capturado um total 3.762 exemplares de peixes, nas áreas a montante e a jusante da pequena hidrelétrica PCH Presidente Vargas, os quais estiveram distribuídos em quatro ordens, dez famílias, 17 gêneros e 25 espécies, perfazendo um total de 121.072,88 gramas (Tabela 2, Tabela 3, Tabela 4 e Tabela 5). O registro fotográfico de todas as espécies capturadas encontra-se na Figura 8, Figura 9, Figura 10, Figura 11.

Num contexto regional, levantamentos realizados ao longo da bacia do rio Tibagi, têm demonstrado um incremento em número de espécies ao longo dos anos, sendo observadas 69 espécies de peixes nos trabalhos de Bennemann *et al.* (1995), enquanto que abordagens mais recentes, ao longo de seus afluentes e subafluentes, revelaram a ocorrência de 110 (SHIBATTA *et al.*, 2002) a 153 espécies (PELICICE *et al.*, 2005, RAIO & BENNEMAN, 2010).

Para Pelicice *et al.* (2005), apesar deste elevado valor de riqueza regional de espécies citado acima, assembleias locais tendem a apresentar valores consideravelmente mais baixos, oscilando entre 3 a 39 espécies, sendo esta uma tendência observada em várias partes do mundo (MATTHEWS, 1998). Sendo assim, a composição de 25 espécies (Tabela 2, Tabela 3 e Tabela 4) no presente estudo, para um trecho local da região média do rio Tibagi, parece se enquadrar dentro do padrão descrito por Matthews, (1998) e Pelicice *et al.* (2005).

Tabela 2. Relação das espécies de peixes e suas respectivas frequências em número, nas áreas a montante e a jusante da PCH Presidente Vargas, durante as campanhas de dezembro de 2015 (D), março (M), junho (J), setembro (S) e dezembro (D) de 2016.

TAXA			Ponto					Ponto :		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			onto					onto (4	
Ordem	D/15	M/16	J/16	S/16	D/16	D/15	M/16	J/16	S/16	D/16	D/15	M/16	J/16	S/16	D/16	D/15	M/16	J/16	S/16	D/16
Characiformes																				
Família Parodontidae																				
Apareiodon piracicabae																				1
Família Erythrinidae																				
Hoplias malabaricus			1		1											1				
Família Anostomidae																				
Leporinus elongatus		1	1									1								
Leporinus friderici			1									1				2				
Leporinus obtusidens	2					1					4					1				
Schizodon nasutus			6					1												1
Família Characidae																				
Astyanax altiparanae	49	120	1	10	1	73	26	8	7	2	49	28		6	1	282	22	25	2	
Astyanax bockmanni	39	10	5	12		23	5	3	13		16	8		13		66	5	49	9	
Astyanax fasciatus	20	126	33	97	28	33	42	142	36	11	31	44		47	2	55	22	114	38	
Astyanax paranae	9	6				16	1				16	2				29	4			
Brycon nattereri																	1			
Galeocharax knerii	12	1	6			5	5	16		1	1				2	4		6		
Oligosarcus paranensis	3	5			1	5	4		2		1	2		1		2	1	1		
Ordem Siluriformes																				
Família Heptapteridae																				
Rhamdia quelen						2										1				
Família Pimelodidae																				
Iheringichthys labrosus		3					4				2	11				24				

TAXA		F	Ponto	1			ı	Ponto	2			P	onto	3			F	Ponto (4	
	D/15	M/16	J/16	S/16	D/16	D/15	M/16	J/16	S/16	D/16	D/15	M/16	J/16	S/16	D/16	D/15	M/16	J/16	S/16	D/16
Pimelodus maculatus	1		1	2			1				4	4			1	2		1		
Pimelodus microstoma																2				
Família Loricariidae																				
Hypostomus albopunctatus										1										
Hypostomus nigromaculatus			1				1			1		4			1					3
Hypostomus sp.																		1		
Loricaria prolixa																				1
Ordem Gymnotiformes																				
Família Sternopygidae																				
Eigenmannia virescens											1									
Ordem Perciformes																				
Família Cichlidae																				
Geophagus brasiliensis							1									1				1
Número de Indivíduos	135	272	56	121	31	158	90	170	58	16	125	105	0	67	7	472	55	197	49	7
Total de Espécies	8	8	10	4	4	8	10	5	4	5	10	10	0	4	5	14	6	7	3	5
Riqueza	1,42	1,25	2,23	0,62	0,87	1,38	2	0,78	0,73	1,44	1,86	1,93	-	0,71	2,05	2,11	1,25	1,13	0,51	2,05
Diversidade	1,59	1,08	1,44	0,68	0,42	1,5	1,51	0,62	1	1,03	1,64	1,64	-	0,84	1,54	1,34	1,29	1,11	0,64	1,47
Equitabilidade	0,76	0,52	0,62	0,49	0,3	0,72	0,65	0,38	0,72	0,64	0,71	0,71	-	0,61	0,96	0,5	0,72	0,57	0,58	0,91

Tabela 3. Relação das espécies de peixes e suas respectivas frequências em número, nas áreas a montante e a jusante da PCH Presidente Vargas, durante as campanhas de fevereiro (F), abril (A), julho (J) e outubro (O) de 2017; janeiro (J), abril (A), agosto (A) e outubro (O) de 2018.

TAVA		,	(1)		nto 1							Poi	nto 2							Pon	to 3							Po	nto 4			
TAXA	F/17	A/17	J/17			A/18	A/18	0/18	F/17	A/17	J/17			A/18	A/18	0/18	F/17	A/17 J	/17 0			A/18	A/18	0/18	F/17	A/17	J/17			A/18	A/18	0/18
Ordem Characiformes																																
Família Parodontidae																																
Apareiodon piracicabae																				1												
Família																																
Erythrinidae Hoplias																																
malabaricus Família																																
Anostomidae Leporinus																																
elongatus													1							1				1	1				1			
Leporinus friderici Leporinus													1												1							
obtusidens Schizodon nasutus					1		2	1					7							1	1	2		1					2			
Família Characidae																																
Astyanax altiparanae	16			11	13	10	8	9	15		3	6	8	11	6	7	20			22	10	14	3	7	26			26	14	10	14	15
Astyanax bockmanni	1						2					4			4	1								1				1			3	4
Astyanax fasciatus Astyanax paranae	6		3	3	5	3	42	20	3		12	6		1	31	18	4			4 6	7	4	12	12	6			7	6		17	14
Brycon nattereri																																
Galeocharax knerii Oligosarcus	4			6	16	6	6	13	12			4	10	12	5	10	4			2	10	9	1	12	12				16	6		8
paranensis Família	3					1					6	1									2								5		1	
Salmininae Salminus hilarii						1								1																1		
Ordem Siluriformes						1								1																1		
Família Heptapteridae																																
Rhamdia quelen Família			1																													
Pimelodidae Iheringichthys																																
labrosus																														 		
Pimelodus maculatus																														<u> </u>		<u> </u>
Pimelodus microstoma													1																			<u> </u>
Família Loricariidae																																
Hypostomus albopunctatus				2									2							1					1			1			1	
Hypostomus nigromaculatus			3	4							1	3	1																	1		
Hypostomus sp.				•							_																					
Coricaria prolixa Ordem																																
Gymnotiformes Família																																
Sternopygidae																																

Eigenmannia																																
virescens																																
Ordem																																
Perciformes																																
Família Cichlidae																																
Geophagus																																
brasiliensis						1																										
Número de																																
Indivíduos	30	0	7	27	35	22	60	43	30	0	22	24	31	25	46	36	28	0	0	38	31	29	16	34	46	0	0	35	45	18	36	41
Total de Espécies	5	0	3	6	4	6	5	4	3	0	4	6	8	4	4	4	3	0	0	8	6	4	3	6	5	0	0	4	7	4	5	4
	1,17	-	1,02	1,51	0,84	1,61	0,97	0,79	0,58	-	0,97	1,57	2,03	0,93	0,78	0,83	0,60	-	-	1,92	1,45	0,89	0,72	1,41	1,04	-	-	0,84	1,57	1,03	1,11	0,80
Diversidade	1,26	-				1,40				-	1,09								-			1,17				-		0,74				
Equitabilidade	0,78	-	0,91							-	0,79								-						0,68	-		0,53				

Tabela 4. Relação das espécies de peixes e suas respectivas frequências em número, nas áreas a montante e a jusante da PCH Presidente Vargas, durante as campanhas de janeiro (J), abril (A), julho (J) e setembro (S) de 2019; fevereiro (F), maio (M) e agosto (A) de 2020.

2019) Tevereno (1)) maio		Ĭ	` /																									
TAXA				Ponto	1						Ponto	2						Ponto	3						Ponto	4		
	J/19	A/19	J/19	S/19	F/20	M/20	A/20	J/19	A/19	J/19	S/19	F/20	M/20	A/20	J/19	A/19	J/19	S/19	F/20	M/20	A/20	J/19	A/19	J/19	S/19	F/20	M/20	A/20
Ordem Characiformes																	•						-					
Família Parodontidae																												
Apareiodon piracicabae												1						1						1	1	2		
Família Erythrinidae																												
Hoplias malabaricus												1																
Família Anostomidae																												
Leporinus elongatus																												
Leporinus friderici											1												1					
Leporinus obtusidens	1																											
Schizodon nasutus			1			2		2		1		1	3		1					6			1				6	
Família Characidae																												
Astyanax altiparanae	8	1	5	2	6	20	18	10	1	6	9	4	17	23	4		8	3	4	9	9	8	1	1	12	12	17	18
Astyanax bockmanni				1				1		2							3							3		1		
Astyanax fasciatus	2	1	21	23	1	23	9	2		19	20	3	8	11	5		15	12	1	9	6	1		38	13	21	10	9
Astyanax paranae						2														1								
Brycon nattereri																												
Galeocharax knerii	9	1	1	7	11	15	1	7	2	1	4	9	10	3	4	2		2	12	4	3	9			2		5	1
Oligosarcus paranensis			1		2	1	3			1		1							3	2	2						3	2
Acestrorhynchus																												
lacustris																								1				
Família Salmininae																												
Salminus hilarii																												
Ordem Siluriformes																												
Família																												
Heptapteridae																												
Rhamdia quelen				1					1		1													1			<u> </u>	
Família Pimelodidae																												
Iheringichthys labrosus										1																	L'	<u> </u>
Pimelodus maculatus		2														1								2				
Pimelodus microstoma																											<u> </u>	
Família Loricariidae																												
Hypostomus albopunctatus					1								1													1		
Hypostomus																												
nigromaculatus			1		2						1	3											1					
Hypostomus sp.																												
Loricaria prolixa																												

Klabin Celulose S.A.

Ordem																												
Gymnotiformes																												
Família																												
Sternopygidae																												
Eigenmannia virescens																												
Ordem Perciformes																												
Família Cichlidae																												
Geophagus brasiliensis		1																										
Número de																												
Indivíduos	20	6	30	34	23	63	31	22	4	31	36	23	39	37	14	3	26	18	20	31	20	18	4	47	28	37	41	30
Total de Espécies	4	5	6	5	6	6	4	5	3	7	6	8	5	3	4	2	3	4	4	6	4	3	4	7	4	5	5	4
Riqueza	1,01	2,23	1,47	1,13	1,60	1,21	0,87	1,29	1,44	1,74	1,39	2,23	1,09	0,55	1,13	0,91	0,61	1,03	1,00	1,46	1,00	0,69	2,16	1,55	0,90	1,10	1,08	0,88
Diversidade	1,06	1,56	1,00	0,96	1,40	1,36	1,01	1,29	1,04	1,23	1,21	1,75	1,32	0,85	1,27	0,63	0,93	0,97	1,06	1,59	1,23	0,86	1,38	0,81	1,02	1,04	1,44	0,96
Equitabilidade	0,79	0,97	0,56	0,60	0,78	0,76	0,73	0,80	0,95	0,63	0,67	0,84								0,88	0,89	0,78	1,00	0,41	0,74	0,64	0,89	0,69

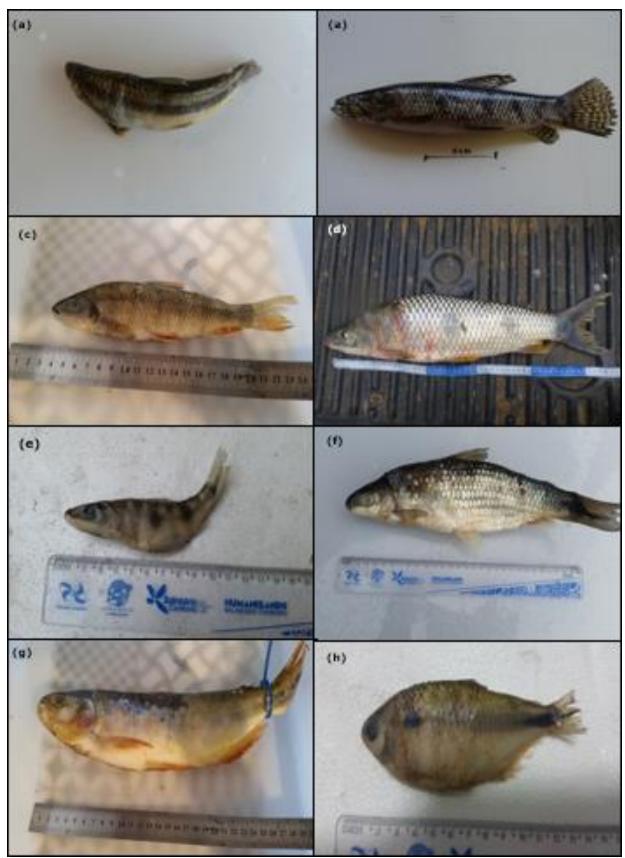


Figura 8. Registro fotográfico dos exemplares capturados: (a) *Apareiodon piracicabae*; (b) *Hoplias malabaricus*; (c) *Leporinus elongatus*; (d) *Leporinus friderici*; (e) *Leporinus obtusidens*; (f) *Schizodon nasutus*; (g) *Brycon nattereri*; (h) *Astyanax altiparanae*.

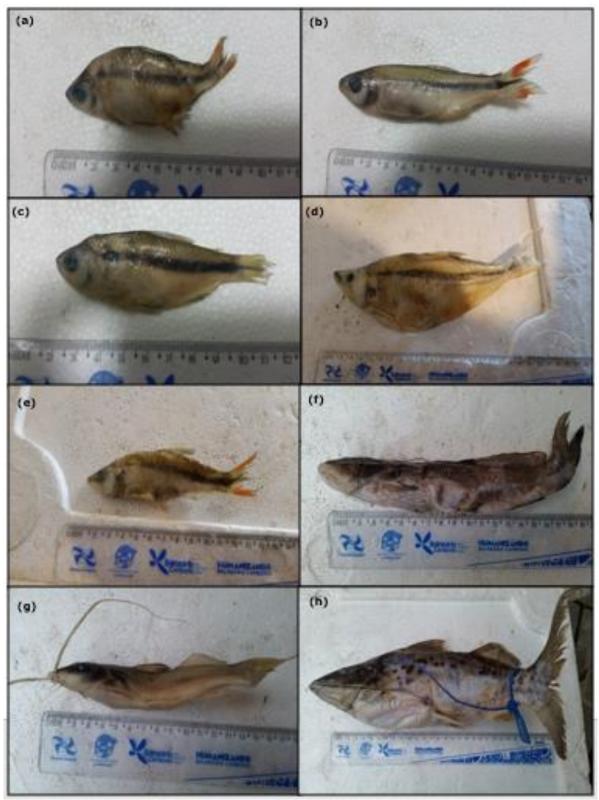


Figura 9. Registro fotográfico dos exemplares capturados: (a) Astyanax bockmanni; (b) Astyanax fasciatus; (c) Astyanax paranae; (d) Galeocharax knerii; (e) Oligosarcus paranensis; (f) Rhamdia quelen; (g) Iheringichthys labrosus e (h) Pimelodus maculatus.

Figura 10. Registro fotográfico dos exemplares capturados: (a) *Pimelodus microstoma*; (b) *Hypostomus albopunctatus*; (c) *Hypostomus nigromaculatus*; (d) *Hypostomus sp*; (e) *Loricaria prolixa*; (f) *Eigenmannia virescens*, (g) *Geophagus brasiliensis* e (h) *Salminus hilarii*.

Figura 11 Registro fotográfico de exemplar capturado: (a) *Acestrorhynchus lacustris*.

As ordens Characiformes e Siluriformes foram dominantes em número de espécies e abundância de exemplares (Tabela 2, Tabela 3 e Tabela 4), o que está de acordo com o padrão descrito por Lowe-McConnell, (1999) para os sistemas de água-doce neotropicais. Esta tendência também tem sido observada nos trabalhos realizados na bacia do rio Tibagi por Bennemann *et al.* (1995 e 2000), Shibatta *et al.* (2002 e 2007), Hoffman *et al.* (2005), Pelicice *et al.* (2005), Sant'Anna *et al.* (2006) e Langeani *et al.* (2007).

A família Characidae foi responsável por 94,15% da abundância dos peixes coletados, nas 20 coletas/campanhas realizadas, seguida por Anostomidae (1,99%), Pimelodidae com 1,86%, e Loricariidae (1,22%) (Tabela 2, Tabela 3, Tabela 4 e Figura 12). As demais famílias representaram em conjunto, apenas 0,77% dos peixes amostrados (Tabela 2, Tabela 3, Tabela 4 e Figura 12).

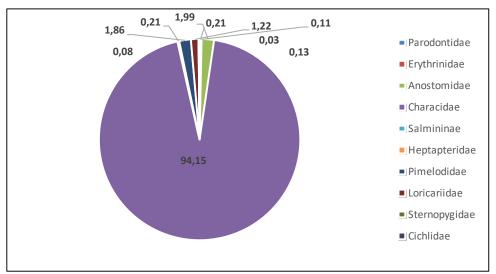


Figura 12. Contribuição percentual em número de indivíduos para as principais famílias de peixes, capturadas nas áreas a montante e a jusante da PCH Presidente Vargas, nas 20 campanhas realizadas.

Segundo Ferreira *et al.* (1993) a ordem Characiformes compreende a grande maioria de peixes de água doce do Brasil, com mais de 950 espécies descritas para a região Neotropical. A elevada participação da família Characidae é decorrente da ampla distribuição de suas espécies em água doce, além desta família incluir a maioria das espécies de peixes de águas interiores do Brasil (BRITSKI, 1972).

A predominância de Characidae no presente estudo esteve fundamentada na elevada contribuição das espécies *Astyanax fasciatus* (Cuvier, 1819) (Figura 9b) e *Astyanax altiparanae* Garutti & Britski, (2000) (Figura 8h), que em conjunto contribuíram com 71,82% de todos os peixes capturados (Figura 13). Tal dominância numérica muito provavelmente está relacionada com a grande capacidade adaptativa das espécies deste gênero, devido à flexibilidade de hábitos alimentares e a capacidade de reprodução em diversos hábitats, permitindo sua ampla distribuição e abundância ao longo da bacia do rio Tibagi (BENNEMANN et al. 2000, 2002 e 2005, ORSI et al., 2004 e HOFFMAN et al., 2005).

Além de *A. fasciatus* e *A. altiparanae* foi observada simpatria com outras duas espécies do gênero, com *Astyanax bockmanni* (Vari & Castro, 2007) (Figura 9a) contribuindo com 8,19% da abundância e *Astyanax paranae* (Eigenmann, 1914) (Figura 9c) com 2,50% (Figura 13). A saicanga, *Galeocharax knerii* (Steindachner, 1879) (Figura 9d) foi a terceira espécie em abundância representando 9,78% dos peixes capturados, seguido de *Oligosarcus paranensis* Menezes & Géry, 1983 (Figura 9e) (1,81%) e *Iheringichthys labrosus* (Kröyer, 1874) (Figura 9g) com 1,20% (Figura 13). As demais espécies em conjunto contribuíram com apenas 4,70% do total amostrado, o que está de acordo com os trabalhos realizados na bacia do rio Tibagi, onde apesar do grande número de espécies observadas regionalmente (151 ou 153, como citado no trabalho de Pelicice *et al.*, 2005), poucas se sobressaem em número de indivíduos (SHIBATTA *et al.*, 2002 e 2007, HOFFMAN *et al.*, 2005, PELICICE *et al.*, 2005 e LANGEANI *et al.*, 2007).

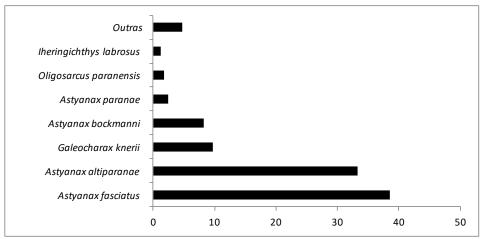


Figura 13. Contribuição percentual em número de indivíduos para as principais espécies de peixes, capturadas nas áreas a montante e a jusante da PCH Presidente Vargas, durante o período de estudo.

Em afluentes e subafluentes das regiões média e inferior da bacia do rio Tibagi, Shibatta *et al.* (2002) destacaram a presença de quatro espécies de *Astyanax: A. altiparanae, A. eigenmanniorum* (Cope, 1894) (recentemente reclassificada como A. *bockmanni*), *A. fasciatus* e *A. scabripinnis* (Jenyns, 1842), esta última muito provavelmente pertencente ao complexo *A. paranae.* Espécies estas, presentes em simpatria no presente estudo/monitoramento, com participações distintas ao longo das áreas amostradas, demonstrando as diferentes formas de ocupação ao longo do gradiente amostral, muito provavelmente em função das estratégias alimentares e utilização do espaço (presença de abrigos/diversidade de *habitats* entre os locais comparados) (BENNEMANN *et al.*, 2000, 2002 e 2005, ORSI *et al.*, 2004 e HOFFMAN *et al.*, 2005).

É importante destacar que nas áreas de maior velocidade de corrente, como nos pontos 1 e 3 (Tabela 1 e Figura 3), houve uma pequena dominância de *A. altiparanae* sobre as demais espécies deste gênero (dez/15), alternando suas participações na comunidade com *A. fasciatus*, especialmente nas coletas de junho e setembro de 2016, em que o rio apresentava elevada vazão de água Tabela 2, Tabela 3 e Tabela 4). Por outro lado, no ponto 4 (característica de rio semi-lótico) este domínio (dez/15) foi mais acentuado, o que segundo Orsi *et al.* (2004) e Bennemann *et al.* (2002 e 2005), está de acordo com a biologia da espécie, que apesar de sua ampla distribuição e capacidade adaptativa destacada acima, tem preferência por águas mais calmas, nas margens dos rios da bacia do Tibagi.

Ainda neste sentido, o de distribuição diferenciada das espécies ao longo dos pontos amostrais, Araújo-Lima, (1995) definem ambientes distintos nos corpos aquáticos, identificando proporções diferenciadas entre espécies de Characiformes e Siluriformes que mudam marcadamente sua proporção em relação ao hábitat. Em geral, nos ambientes

próximos às margens é observada uma maior participação das espécies de Characiformes, enquanto que os Siluriformes e Gymnotiformes são mais abundantes nos canais de rios e no fundo (BENNEMANN *et al.*, 2000 e 2002). Tal configuração pôde ser observada claramente ao longo dos pontos amostrais, onde nos pontos 1 e 2 (onde as coletas foram realizadas nas margens do rio), houve um predomínio dos Characiformes e pequena participação dos Siluriformes, enquanto que no ponto 3 onde a amostragem foi mais no canal do rio já foram observadas mais espécies de Siluriformes, além da presença exclusiva do Gymnotiforme *Eigenmannia virescens* (Valenciennes, 1847) (Tabela 2, Tabela 3 e Tabela 4).

No ponto 4, caracterizado por apresentar águas mais tranquilas (rio semi-lótico) apesar da dominância dos Characiformes, foi observada uma maior participação dos Siluriformes se comparado com as demais áreas. Isto indica que, provavelmente estas espécies apresentem preferência por águas mais calmas no fundo dos rios, uma vez que foram capturados no fundo do canal por tarrafas e covos e na parte inferior das redes (Tabela 5).

Por outro lado, os Characidae foram mais abundantes nas margens do canal, na porção superficial da coluna d'água. Tais configurações estão de acordo com o apresentado por Bennemann *et al.* (2000 e 2002), demonstrando as interações interespecíficas de coexistência entre as espécies, ou seja, para não competirem entre si apresentam diferentes formas de alimentação e utilização do espaço ao longo do gradiente amostral.

As maiores abundâncias de exemplares foram também observadas no ponto 4, assim como, as maiores riquezas de espécies, sendo observadas 24 das 25 espécies coletadas no presente estudo, com quatro exclusivas deste ambiente, como a pirapitinga *Brycon nattereri* Günther, 1864 (Figura 8 g), a bocarra *Acestrorhynchus lacustris* (Lütken, 1875) (Figura 11a), o cascudo *Hypostomus sp.* (Figura 10d) e o cascudo-chinelo *Loricaria prolixa* Isbrücker & Nijssen, 1978 (Figura 10e) (Tabela 2, Tabela 3, Tabela 4, e Figura 14).

Contudo como comentado anteriormente, apesar desta maior diversidade, o elevado predomínio de *A. altiparanae* (dez/15) e de *A. fasciatus* (jun/16), sobre as demais espécies nesta porção do rio, acabou reduzindo a equitabilidade deste local, especialmente para as coletas de dezembro de 2015 (Tabela 2, Tabela 3 e Tabela 4).

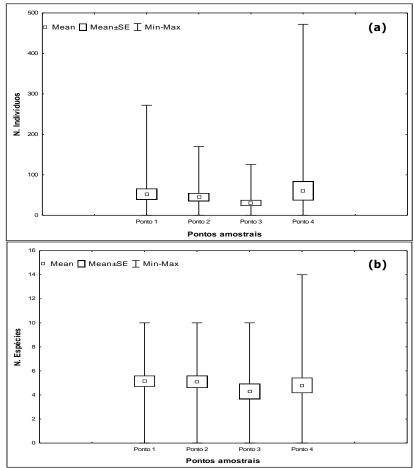


Figura 14. Variação média do número de indivíduos (a) e riqueza de espécies de peixes (b), nos pontos amostrais a montante (#3 e #4) e a jusante (#1 e #2) da PCH Presidente Vargas, nas 20 campanhas realizadas. O retângulo central indica a média e a caixa representa a variação do erro padrão em torno da média.

Comparativamente, as amostragens de dezembro de 2015, março, junho, setembro, dezembro de 2016, fevereiro, abril, julho, outubro de 2017, janeiro, abril, agosto e outubro de 2018, janeiro, abril, julho, setembro de 2019, fevereiro, maio e agosto de 2020 revelaram mudanças na composição da comunidade de peixes, ao longo dos pontos amostrais de influência da PCH Presidente Vargas, com o incremento de três novas espécies em março de 2016: *Leporinus elongatus* (Valenciennes, 1849) (Figura 8c), *Brycon nattereri* (Günther, 1864) (Figura 8g) e *Hypostomus nigromaculatus* (Schubart, 1964) (Figura 10c) e duas em junho de 2016: *Schizodon nasutus* (Kner, 1859) (Figura 8f) e *Hypostomus* sp. (Figura 10d) (Tabela 2). Ao passo que em setembro de 2016 não foi verificada a ocorrência de novos táxons, com apenas cinco espécies registradas nas amostragens. Contudo, como mencionado na metodologia, no mês de setembro, devido à abertura das barragens e o carreamento das redes dos pontos de coleta, foi efetuado um esforço de um dia a menos de coleta (21/09), que possivelmente tenha influenciado na riqueza e abundância de peixes.

Em dezembro de 2016, embora tenha sido capturado o menor número de peixes entre os meses de amostragem (em virtude do baixo nível dos rios e consequentemente, deslocamento para outras regiões), foram observadas três novas espécies, sendo estas o canivete *Apareiodon piracicabae* (Figura 8a), o cascudo *Hypostomus albopunctatus* (Regan, 1908) (Figura 10b) e o cascudo-chinelo *Loricaria prolixa* (Figura 10e). Tais resultados demonstram a complexidade dos ecossistemas amostrados e a necessidade da continuidade dos estudos de monitoramento, perante o constante o aparecimento de novas espécies.

As espécies dominantes mantiveram-se praticamente as mesmas, com alterações nas participações de cada uma entre as coletas, com destaque para *Astyanax fasciatus*, que contribuiu com as maiores capturas para o mês de março e principalmente em junho e setembro de 2016 (Tabela 2, Tabela 3 e Figura 16), além da pequena participação dos Siluriformes na terceira e quarta coletas. Tais padrões obtidos, muito provavelmente estão relacionados com a própria biologia das espécies capturadas e seus movimentos ao longo dos gradientes espaciais e sazonais na área de estudo. Especialmente pela variação das condições hidrológicas, onde a elevada vazão da água em junho de 2016 pode ter resultado na diminuição da representatividade dos Siluriformes, bem como, na alternância das populações de *A. altiparanae* e *A. fasciatus*.

Por outro lado, na quinta coleta (dez/2016), em virtude do baixo nível dos rios, houve uma maior participação dos Siluriformes, especialmente da família Loricaridae, representada pelos cascudos, e uma pequena abundância dos Characidae (gênero Astyanax) em comparação as demais amostragens. De um modo geral, os *Astyanax* apresentam baixa tolerância a estas condições ambientais e muito provavelmente tenham se deslocado para áreas mais profundas, o que explica, por exemplo, a ausência destes organismos no ponto 4, que em dezembro de 2015, quando o rio apresentava um maior nível de água, foram as espécies dominantes nas amostragens.

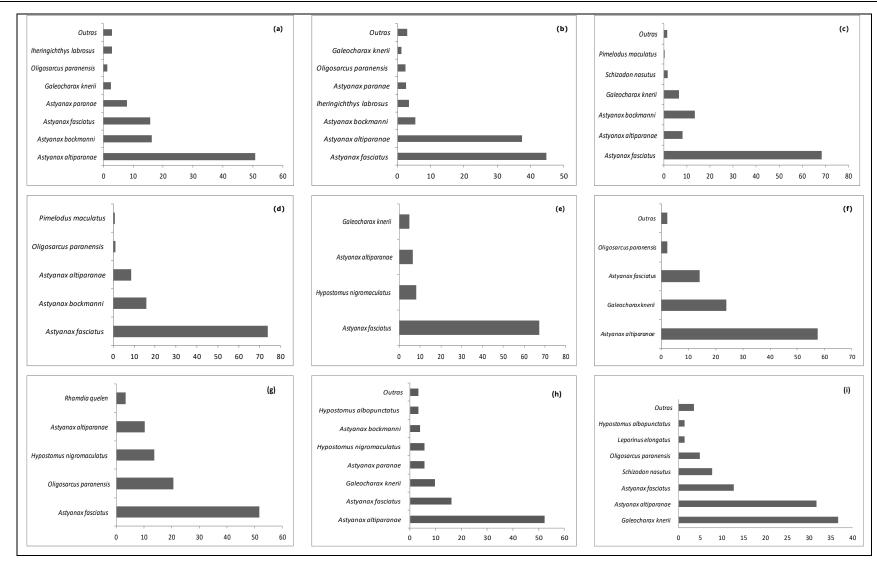
Nas amostragens de fevereiro de 2017, novamente ocorreram mudanças na assembleia de peixes da PCH Presidente Vargas, com *A. altiparanae* voltando a contribuir com as maiores abundâncias, a exemplo do observado em dezembro de 2015 (Figura 16). Contudo, para este mês de amostragem, em que o rio apresentava-se novamente com baixo volume de água, houve uma elevada participação das espécies carnívoras, com a Saicanga, *Galeocharax knerii* ocupando a segunda posição em abundância, com 23,88% do total de peixes capturados e *Oligosarcus paranensis* contribuindo com a quarta colocação entre os peixes mais abundantes (Figura 16). Tais resultados corroboram a importância da vazão do rio na estruturação da comunidade de peixes locais, em conjunto com as relações de

interação entre as espécies, neste exemplo, muito provavelmente vinculadas à alimentação/predação exercida pelas carnívoras.

Em abril de 2017, não foram capturados exemplares em virtude das atividades de manutenção da PCH Presidente Vargas, que deixaram o canal de fuga completamente sem água, ao passo que nas campanhas de julho de 2017, com o retorno do nível de água aos canais (meses anteriores), foi observado um repovoamento da ictiofauna da PCH, com *A. fasciatus* contribuindo com as maiores abundâncias registradas (Figura 16). Também é interessante ressaltar a elevada contribuição das espécies carnívoras, como *Oligosarcus* paranensis, a exemplo do observado em fevereiro deste ano.

Em outubro de 2017, o monitoramento do processo sucessional, pós-impacto das manutenções de abril, demonstra uma tendência de retorno da comunidade íctica às composições específicas observadas no início das coletas, com *A. altiparanae* novamente se caracterizando como espécie chave, sobressaindo em abundância sobre as demais espécies (Figura 16). Contudo, destaca-se que ainda foi capturado um menor número de indivíduos e espécies em relação a dezembro de 2015, bem como, é importante mencionar a elevada contribuição de cascudos do gênero Hypostomus. Tais padrões estão de acordo com o esperado dentro do processo de sucessão ecológica, com pequenas readequações da comunidade perante o cenário atual.

Em janeiro de 2018 novamente observou-se uma elevada contribuição das espécies carnívoras, seguindo o padrão verificado no início do repovoamento na região (Tabela 2, Tabela 3, e Figura 16). Para este mês de amostragem, a saicanga *Galeocharax knerii* foi a espécie mais representativa em número de exemplares, inclusive superando *A. altiparanae* que ocupou a segunda posição em abundância, com 31,69% dos peixes capturados, seguida de *Astyanax fasciatus* (12,68%), *Schizodon nasutus* (7,75%), *Oligosarcus paranensis* (4,93%), *Leporinus elongatus* e *Hypostomus albopunctatus*, ambos com 1,41% do total capturado em número região (Tabela 2, Tabela 3 e Figura 16).


Na campanha de abril de 2018 foi observada a presença de uma nova espécie na assembléia de peixes da PCH Presidente Vargas, sendo esta a tabarana *Salminus hilarii* (Valenciennes, 1849), que por ser uma espécie migradora, encontra-se quase ameaçada de extinção (NT), no Estado do Paraná. *A. altiparanae* se manteve como dominante nas amostragens, seguida de *Galeocharax knerii e Astyanax fasciatus*, mantendo-se o padrão observado nas coletas anteriores região (Tabela 2, Tabela 3 e Figura 16).

Para a amostragem de agosto de 2018, *Astyanax fasciatus* voltou a figurar como espécie dominante na assembleia de peixes da PCH, seguida por *A. altiparanae*, *G. knerii* e A. *bockmanni*, a exemplo do observado nos períodos iniciais de monitoramento, em que principalmente a vazão natural do rio determinava as mudanças na estrutura da comunidade de peixes (Tabela 2, Tabela 3 e Figura 16). Destaca-se que para este mês de coleta, o nível do reservatório encontrava-se baixo, devido ao pequeno volume de chuvas para a estação do ano. Dentre os exemplares de *Astyanax fasciatus* amostrados neste período, 26 (cerca 25% do total amostrado para a espécie) apresentavam gônadas maturas, especialmente nos pontos amostrais 1, 2 e 4, corroborando a hipótese levantada de que o ponto 3 realmente parece não constituir um ambiente adequado a reprodução da espécie.

Na campanha, realizada em outubro de 2018, *Astyanax fasciatus* manteve-se como dominante, (ainda com uma grande quantidade de exemplares com gônadas maturas), com a saicanga *G. knerii* ocupando a segunda posição em abundância, seguida de A. *bockmanni, Schizodon nasutus, Leporinus elongatus e Leporinus obtusidens* (Tabela 2, Tabela 3 e Figura 16). Em de janeiro de 2019, *A. altiparanae* novamente figurou como a espécie dominante nas amostragens, seguido da carnívora *Galeocharax knerii* e de *Astyanax fasciatus*, a exemplo do observado em períodos anteriores, fortalecendo a presença de padrões determinados principalmente pelo regime hídrico da região (Tabela 2, Tabela 3, Tabela 4 e Figura 16).

Em abril de 2019 foi capturado um pequeno número de exemplares nas amostragens (17 indivíduos), muito provavelmente associado à baixa vazão do rio, onde predominaram as saicangas *Galeocharax knerii*, seguido *Astyanax altiparanae* e *Pimelodus maculatus*. Nas coletas de julho e setembro de 2019, *Astyanax fasciatus*, voltaram a ser dominantes ao longo da PCH Presidente Vargas, seguidas de *Astyanax altiparanae* e *G. knerii*. Destaca-se na 16ª amostragem a presença de uma espécie que ainda não havia sido amostrada nos anos anteriores, sendo esta a bocarra *Acestrorhynchus lacustris* (Lütken, 1875) (Tabela 2, Tabela 3, Tabela 4 e Figura 16).

Em fevereiro de 2020, a saicanga, *G. knerii* foi predominante nas amostragens, seguida por *A. fasciatus e A. altiparanae* (Tabela 2, Tabela 3, Tabela 4 e Figura 16). Ao passo que em maio e agosto de 2020, *A. altiparanae*, seguida de *A. fasciatus* mais uma vez representaram as maiores abundâncias da comunidade de peixes da PCH Presidente Vargas (Tabela 2, Tabela 3, Tabela 4 e Figura 16). Nesta última amostragem (ago/20), a exemplo do observado para o mesmo período de 2018, cerca de 25% dos exemplares de *Astyanax altiparanae e Astyanax fasciatus* encontravam-se com gônadas maturas.

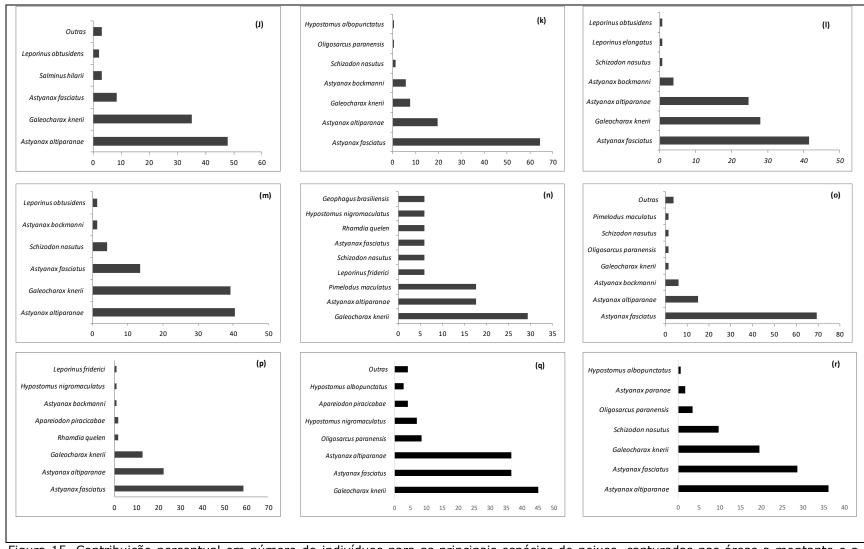


Figura 15. Contribuição percentual em número de indivíduos para as principais espécies de peixes, capturadas nas áreas a montante e a jusante da PCH Presidente Vargas, nas amostragens de dezembro de 2015 (a), março (b), junho (c) setembro (d) e dezembro (e) de 2016; fevereiro (f), julho (g) e outubro de 2017 (h); janeiro (i), abril (j), agosto (k) e outubro (l) de 2018; janeiro (m), abril (n), julho (o) e setembro (p) de 2019; fevereiro (g), maio (r) e agosto (s) de 2020

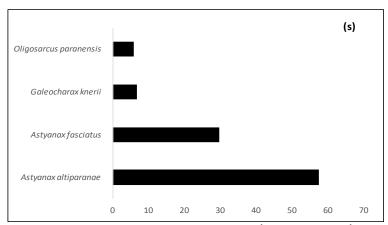


Figura 16. Contribuição percentual em número de indivíduos para as principais espécies de peixes, capturadas nas áreas a montante e a jusante da PCH Presidente Vargas, nas amostragens de agosto (s) de 2020

Quanto ao número de organismos capturados, bem como, em relação à riqueza e a diversidade, as amostragens de dezembro de 2015 apresentaram valores médios superiores as demais, muito provavelmente relacionados à vazão do rio Tibagi (Figura 17).

Nas coletas de março de 2016, os pontos de amostragem encontravam-se com um nível de água significativamente mais baixo que o observado em dezembro de 2015, o que pode ter ocasionado na movimentação dos peixes para locais com maior vazão. A baixa representatividade de indivíduos no ponto 4 (mar/2016) corrobora esta hipótese, uma vez que este foi o ponto com menor número de indivíduos coletados, e que em dezembro de 2015 apresentava as maiores abundâncias de organismos, por apresentar águas mais calmas e rodeadas por vegetação ciliar bem preservada (Tabela 2, Tabela 3 e Figura 17).

Por outro lado, os rendimentos ainda mais baixos obtidos em junho e setembro de 2016 podem estar vinculados a uma elevada vazão nesta porção média do rio Tibagi, resultante da abertura de comportas das barragens que drenam para esta localidade, provocando um deslocamento das populações de peixes ainda mais acentuado que o observado em março deste ano, resultando em mudanças na composição e estrutura da comunidade, com redução na abundância, na riqueza e na diversidade de peixes (Tabela 2, Tabela 3 e Figura 17). Tais resultados corroboram a importância das condições hidrológicas locais (vazão do rio) na estruturação da comunidade de peixes da Pequena Central Hidrelétrica PCH Presidente Vargas. Além disto, é de comum consenso que amostragens nos meses de primavera (dez/15) e verão (mar/16), geralmente apresentem maiores abundâncias de organismos, associados com maior temperatura da água, maior disponibilidade de alimento, bem como, a ocorrência de eventos reprodutivos e de recrutamento.

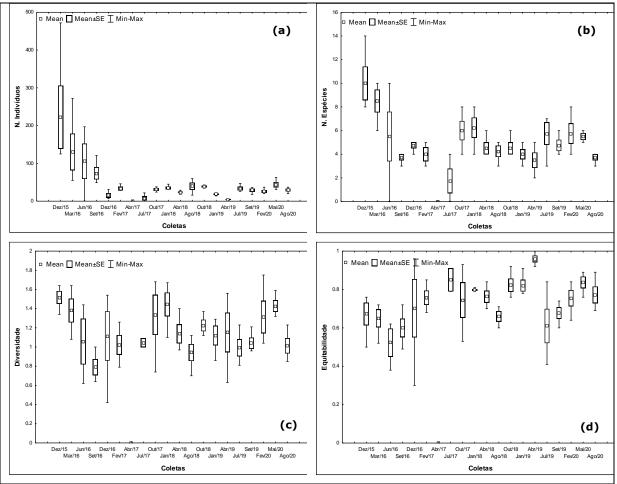


Figura 17. Variação média do número de indivíduos (a), número de espécies de peixes (b), diversidade (c) e equitabilidade (d), nas áreas a montante e a jusante da PCH Presidente Vargas, nas 20 campanhas realizadas. O retângulo central indica a média e a caixa representa a variação do erro padrão em torno da média.

Na sexta campanha amostral (fev/2017), embora a captura em número de indivíduos, tenha se apresentado baixa, se comparada ao mesmo período de 2016 (mar/2016), observa-se um incremento na abundância de peixes, bem como, nos índices de diversidade e equitabilidade aos apresentados no final do ano de 2016 (dez/2016), em que o rio apresentava-se com as menores profundidades observadas durante o presente monitoramento. Tal configuração muito provavelmente tenha resultado em um grande deslocamento de peixes para áreas adjacentes e um possível retorno (com modificações na estrutura e composição da comunidade, citadas anteriormente) em fevereiro de 2017.

Como comentado anteriormente, na sétima campanha amostral não foram capturados exemplares ao longo dos pontos amostrais, em virtude da atividade de manutenção da PCH Presidente Vargas, que deixou o canal de fuga completamente sem água. Durante este período de manutenção foi realizado o resgate das espécies de peixes ao longo do canal de

fuga, bem como, no reservatório da PCH. Etapa esta que foi desenvolvida pela equipe de resgate de fauna da Usina Mauá.

Com o término da manutenção da PCH e retorno dos níveis de água do reservatório e canal de fuga, nos meses seguintes, foi observado um repovoamento da ictiofauna (campanha oito), entretanto, as abundâncias, bem como, o número de espécies, riqueza e diversidade foram significativamente mais baixos se comparado com os períodos iniciais de monitoramento (dezembro de 2015 a setembro de 2016), o que de certo modo era esperado, perante o "impacto" sofrido pela comunidade. Contudo há de se destacar que nos pontos amostrais 3 e especialmente no ponto 4 (comumente caracterizado por apresentar elevados rendimentos em captura e número de espécies), as redes de espera foram furtadas em dois dos três dias de amostragem, o que muito provavelmente tenha contribuído para este baixo rendimento.

Em outubro de 2017, como comentado anteriormente quando abordado a composição de espécies, verifica-se uma tendência de recuperação da comunidade de peixes da PCH, especialmente para o número de indivíduos, a riqueza e a diversidade de espécies, os quais se mantiveram constantes para as amostragens de janeiro de 2018, seguido de leve diminuição em abril de 2018 e pequenos incrementos e oscilações em agosto e outubro de 2018 (Figura 17a e Figura 17b). De um modo geral, as maiores variações nestes períodos ocorreram para o índice de diversidade, muito possivelmente associado ao baixo volume das águas, onde um pequeno número de espécies se manteve ainda no ambiente. Destaca-se na 11a coleta, a presença da tabarana *Salminus hilarii*, que até o presente momento ainda não havia sido registrada na localidade.

Em janeiro e principalmente em abril de 2019, em virtude da manutenção do baixo nível do rio foram observados pequenos rendimentos em número de exemplares capturados, com apenas 17 indivíduos coletados em abril de 2019. Contudo apesar desta baixa abundância e riqueza de espécies, as diversidades e equitabilidades apresentaram um aumento, pois não houve dominâncias significativas de uma espécie sobre as outras, ou seja, foram poucos os exemplares que ainda conseguiram se manter no ambiente com a pequena lâmina de água disponível para eles. Em julho de 2019, observou-se um aumento no número de indivíduos capturados, bem como, no número de espécies, com destaque para a presença da bocarra *Acestrorhynchus lacustris* (Lütken, 1875) (Figura 11a). As coletas de setembro de 2019, fevereiro e maio de 2020 mantiveram a tendência de julho, com pequenos incrementos nos índices de diversidade e equitabilidade da comunidade, ao passo em que as abundâncias de indivíduos se mantiveram constantes.

A campanha de agosto de 2020 manteve o padrão de abundância das amostragens anteriores, entretanto o número de espécies, bem como os índices de diversidade e em menor grau, a equitabilidade, apresentaram uma pequena redução, muito provavelmente vinculadas as menores temperaturas desta época do ano, sendo capturadas apenas quatro espécies.

Na Tabela 5 estão descritas as capturas por petrecho amostral, onde para as 20 campanhas realizadas, pôde-se observar que de um modo geral, a rede de espera com malha de 3,0 cm entre nós opostos contribuiu com as maiores capturas em número de espécies e abundâncias de exemplares, ao passo que o kicknet e os covos resultaram nas menores capturas, sendo que no kicknet não foi capturado nenhum exemplar.

Contudo, apesar das menores contribuições dos outros métodos, foram capturados exemplares que não seriam selecionados pelas redes de malha 3,0 cm, como o mandi *Pimelodus microstoma* (Steindachner, 1877), amostrados com a tarrafa/malha 8,0cm e o cascudo-chinelo *Loricaria prolixa* (Isbrücker & Nijssen, 1978), com a malha de 8,0 cm (Tabela 5). Estes resultados demonstram a importância da diversificação dos métodos amostrais na caracterização da biodiversidade de peixes nas áreas a montante e a jusante da PCH Presidente Vargas.

Tabela 5. Relação das espécies de peixes e suas respectivas frequências em número, por petrecho amostral, nas áreas a montante e a jusante da PCH Presidente Vargas, durante as 20 campanhas realizadas.

TAXA	Tarrafa	Covo	Kicknet	Malha		
IAAA	TAXA		Kickiiet	3,0cm	8,0cm	12,0cm
Ordem Characiformes						
Família Parodontidae						
Apareiodon piracicabae				8		
Família Erythrinidae						
Hoplias malabaricus					3	1
Família Anostomidae						
Leporinus elongatus				4	3	
Leporinus friderici				3	2	3
Leporinus obtusidens				13		
Schizodon nasutus				30	17	
Família Characidae						
Astyanax altiparanae	44	1		1203	4	
Astyanax bockmanni	13			295		
Astyanax fasciatus	47			1403		
Astyanax paranae				94		
Brycon nattereri					1	
Galeocharax knerii	1			277	90	
Oligosarcus paranensis	2			66		
Acestrorhynchus lacustris				1		
Família Salmininae						

TAXA	Tarrafa	Covo	Kicknet	Malha		
IAAA	Tarrata			3,0cm	8,0cm	12,0cm
Salminus hilarii				3		
Ordem Siluriformes						
Família Heptapteridae						
Rhamdia quelen		1		3	4	
Família Pimelodidae						
Iheringichthys labrosus	26			16	3	
Pimelodus maculatus	2			10	10	
Pimelodus microstoma	2				1	
Família Loricariidae						
Hypostomus albopunctatus				5	6	1
Hypostomus nigromaculatus				3	27	2
Hypostomus sp.				1		
Loricaria prolixa					1	
Ordem Gymnotiformes						
Família Sternopygidae						
Eigenmannia virescens				1		
Ordem Perciformes						
Família Cichlidae						
Geophagus brasiliensis	2			2	1	
Número de Indivíduos	139	2	0	3441	173	7
Total de Espécies	9	2	0	21	15	4
Riqueza	1,62	1,44	-	2,46	2,73	1,54
Diversidade	1,54	0,69	-	1,00	1,70	1,27
Equitabilidade	0,70	1,00	-	0,49	0,63	0,92

A Tabela 6 apresenta uma síntese dos dados biométricos das espécies de peixes capturadas nas 20 campanhas do presente estudo, onde os menores comprimentos e pesos foram observados para *Astyanax bockmanni*, enquanto que os maiores valores ocorreram para o piau-três-pintas, *Leporinus friderici* (Bloch, 1794).

De acordo com a classificação de Vazzoler (1996), utilizada nos trabalhos de Shibatta *et al.*(2002), a qual determina que peixes com comprimentos inferiores a 200 mm podem ser considerados como peixes de pequeno porte; entre 200 e 400 mm, peixes de médio porte; e comprimentos superiores a 400 mm, peixes de grande porte; a grande maioria das espécies coletadas no presente estudo (Tabela 6) pode ser considerada como de pequeno porte. Tais resultados corroboram a afirmação de Castro (1999), de que a ictiofauna de riachos sul-americanos é composta predominantemente por indivíduos de pequeno porte.

Os exemplares de médio porte foram representados pelas espécies, *Hoplias malabaricus*, *Leporinus elongatus*, *Schizodon nasutus*, *Galeocharax knerii*, *Acestrorhynchus lacustris*, *Salminus hilarii*, *Rhamdia quelen*, *Iheringichthys labrosus*, *Hypostomus nigromaculatus*, *Hypostomus albopunctatus* e *Loricaria prolixa*, enquanto que *Leporinus friderici* (Bloch, 1794), *Brycon nattereri* e *Pimelodus maculatus* apresentaram indivíduos de grande porte, nas 20 campanhas realizadas até o momento (Tabela 6).

A Figura 18 apresenta as distribuições de frequência por classe de comprimento para *A. altiparanae*, espécie dominante em dezembro de 2015, onde se iniciaram as atividades de amostragem para o presente programa de monitoramento da Ictiofauna da PCH Presidente Vargas, bem como, nas últimas amostragens. A amplitude de variação do comprimento total foi de 6,5 a 14,5 cm, com picos de captura nas classes de 9,0, 10,0 e 11,0cm, com diferenças pontuais entre as áreas analisadas.

No ponto amostral 3, caracterizado por apresentar um sistema com corredeiras e maiores velocidades de corrente, a análise das distribuições de frequência por classe de comprimento, demonstra uma pequena participação de indivíduos nas classes inferiores, se comparado com as demais áreas, bem como, uma menor contribuição das classes de maior tamanho, estando ausentes indivíduos com comprimentos superiores a 13,0 cm (Figura 18). Estes dados muito provavelmente demonstram que o ponto 3 não seja uma área de recrutamento e reprodução para *A. altiparanae*, podendo representar apenas um trecho de alimentação ou passagem, a qual os indivíduos adultos conseguem explorar, a exemplo do observado no trabalho de Orsi *et al.* (2004) para o médio rio Paranapanema.

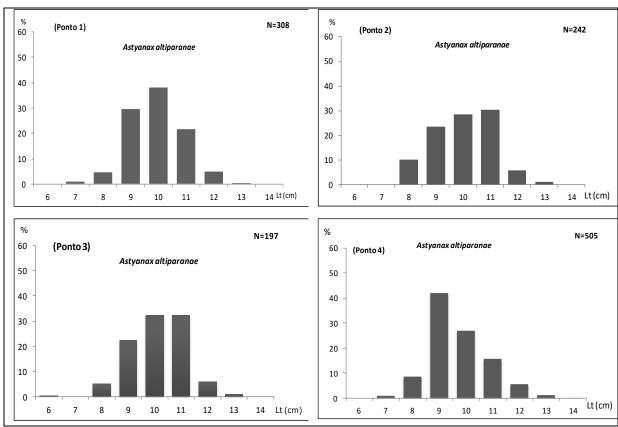


Figura 18. Distribuição de frequência por classe de comprimento para *Astyanax altiparanae*, nos pontos amostrais a montante (#3 e #4) e a jusante (#1 e #2) da PCH Presidente Vargas, nas 20 campanhas realizadas.

Os dados de abundância da espécie ao longo dos trechos amostrados (Figura 19) corroboram a afirmação de que o ponto 3 não constitui um ambiente favorável ao desenvolvimento da população de *A. altiparanae*, sendo observadas as menores abundâncias em relação aos demais pontos de amostragem. Tais padrões estão de acordo com o observado por Bennemann *et al.* (1995) e Shibatta *et al.* (2002), os quais verificaram baixas frequências destas espécies em trechos de correnteza acentuada do médio e alto rio Tibagi. A espécie apesar da elevada capacidade adaptativa, não se desenvolve plenamente em trechos mais caudalosos. Por outro lado, o ponto amostral 4, caracterizado por apresentar águas mais calmas e margeadas por vegetação ciliar bem preservada, muito possivelmente abriga diversas etapas do ciclo de vida de *A. altiparanae*. Neste ponto foi observada uma maior abundância de organismos (Figura 19a), bem como, uma maior diversidade de classes de comprimento (Figura 18), desde indivíduos juvenis a adultos de maior porte, em relação às demais áreas. Ou seja, a área onde está localizado o ponto 4 pode estar funcionando como local de alimentação, refúgio e reprodução para a espécie.

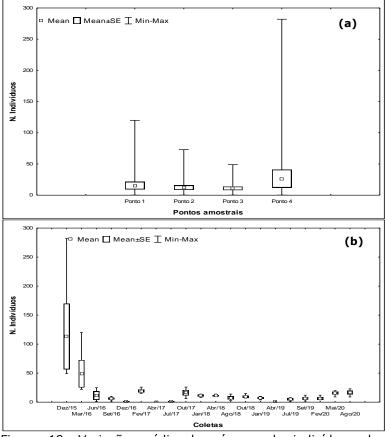


Figura 19. Variação média do número de indivíduos de Astyanax altiparanae, por ponto amostral (a) e ao longo do gradiente temporal de amostragem (b). O retângulo central indica a média e a caixa representa a variação do erro padrão em torno da média.

Como comentado anteriormente, a análise temporal da abundância de *A. altiparanae*, revelou uma diminuição na captura da espécie ao longo do período de coleta, com as maiores contribuições em dezembro de 2015, e as menores em junho e setembro de 2016. Os dados, muito possivelmente estão relacionados com a elevada vazão do rio, uma vez que a espécie não se desenvolve plenamente em ambientes muito caudalosos, sendo então gradativamente substituída por *Astyanax fasciatus* (Figura 19b). Por outro lado, as pequenas participações nas amostragens de dezembro de 2016, muito provavelmente estejam relacionadas ao volume de água muito baixo nos pontos amostrais, provocando o deslocamento da espécie para áreas mais profundas.

Em fevereiro de 2017 observa-se uma recuperação gradativa na abundância da espécie, passando a figurar novamente como a dominante nas amostragens, porém, inferior ao mesmo período de 2016. Em abril de 2017, devido ao nível do rio ter ficado completamente sem água, em virtude das atividades de manutenção da PCH, não foi capturado nenhum exemplar de *A. altiparanae*, ao passo que em julho de 2017 foram capturados apenas três exemplares da espécie. Em Outubro de 2017, voltou a contribuir com as maiores abundâncias, com 65 indivíduos capturados, enquanto que em janeiro e abril de 2018, 45 exemplares estiveram presentes nas amostragens (Figura 19b).

Na campanha de agosto de 2018, foi a segunda espécie mais abundante (31 indivíduos), sendo substituída por *A. fasciatus*, enquanto em outubro deste ano, foi a terceira em abundância, sendo substituída por *G. knerii*. Em janeiro de 2019 foi novamente dominante ao longo dos pontos amostrais da PCH Presidente Vargas, enquanto em abril de 2019, apenas três espécimes de *A. altiparanae* foram capturados, sendo novamente superada em abundância por *G. knerii*, a qual participou com cinco indivíduos, sendo a espécie numericamente mais abundante para este mês. Para os meses de julho e setembro de 2019, bem como em fevereiro de 2020, *A. altiparanae* foi a segunda espécie mais representativa, contribuindo com 20, 26 e 26 exemplares respectivamente. Em maio e agosto de 2020, mais uma vez foi dominante nas amostragens (Figura 19b).

Para *A. fasciatus*, a amplitude de variação do comprimento total foi de 7,5 a 16,0 cm, com as maiores capturas ocorrendo nas classes de 10,0, 11,0 e 12,0 cm em todos os pontos amostrais (Figura 20).

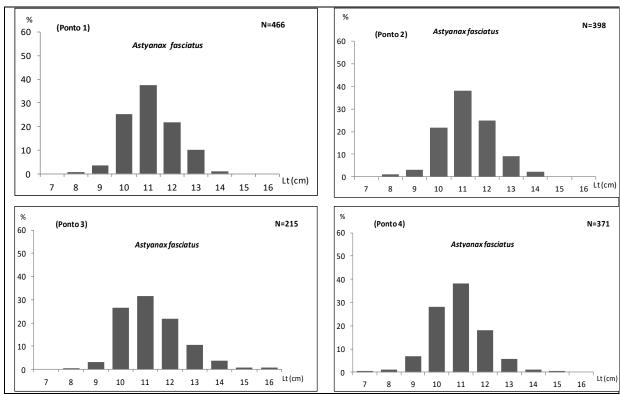


Figura 20. Distribuição de frequência por classe de comprimento para *Astyanax fasciatus*, nos pontos amostrais a montante (#3 e #4) e a jusante (#1 e #2) da PCH Presidente Vargas, nas 20 campanhas realizadas.

Com relação à variação espacial da espécie, as maiores abundâncias ocorreram nos pontos 1 e 4, enquanto que sazonalmente a espécie foi mais abundante em junho de 2016 (Figura 21). Tais resultados muito possivelmente indicam que *A. fasciatus*, em virtude do formato do corpo mais alongado, esteja adaptado a habitar ambientes um pouco mais caudalosos que *A. altiparanae*, resultando na sua dominância na bacia, durante as amostragens de junho e setembro de 2016, em que os trechos apresentavam maiores velocidades de corrente.

Nas amostragens de dezembro de 2016, assim como, o verificado para *A. altiparanae*, foi observado um declínio acentuado na abundância da espécie em virtude do baixo nível de água nos pontos de amostragem. Em fevereiro de 2017, as abundâncias foram ainda mais baixas, muito possivelmente em virtude da manutenção da pequena vazão apresentada pelo rio, em conjunto com uma provável competição com *A. altiparanae* que como comentado, se sobressai em ambientes pouco caudalosos. Assim, como o observado para as demais espécies, as amostragens de abril de 2017 não capturaram nenhum indivíduo, ao passo que em julho de 2017, com o retorno do nível de água aos canais, houve um repovoamento do reservatório da PCH, sendo *A. fasciatus* a espécie dominante nas coletas. Em outubro de 2017, foi substituída por *A. altiparanae*, ocupando a segunda posição em número de

exemplares capturados, enquanto em janeiro e abril de 2018, foi a terceira espécie em abundância na baía, sendo superada por *G. knerii* e *A. altiparanae*.

Em agosto e outubro de 2018, novamente se apresentou como a espécie dominante nas coletas, enquanto em janeiro de 2019 ocupou apenas a terceira posição em abundância. No mês de abril de 2019, apenas um indivíduo de *A. fasciatus* foi coletado nas amostragens, enquanto em julho e setembro deste ano, caracterizou-se novamente como a espécie dominante nas coletas. Em fevereiro, maio e agosto de 2020, ocupou a segunda colocação nas capturas, com 26,50 e 35 espécimes capturados respectivamente.

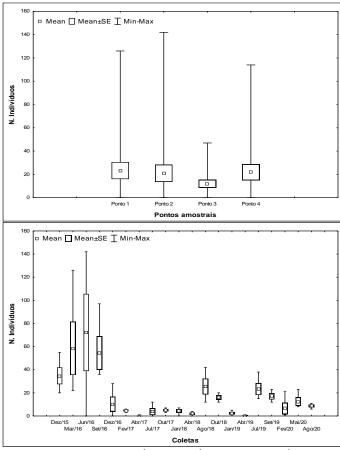


Figura 21. Variação média do número de indivíduos de *Astyanax fasciatus* por ponto amostral (a) e ao longo do gradiente temporal de amostragem (b). O retângulo central indica a média e a caixa representa a variação do erro padrão em torno da média.

Tabela 6. Frequência de ocorrência absoluta (N), Biomassa (g), Comprimento Médio total, Amplitude de Comprimento, Peso Médio total e Amplitude de Peso, das espécies de peixes capturadas nas áreas a montante e a jusante da PCH Presidente Vargas, nas 20 campanhas amostrais.

TAVA	AXA N Biomassa Larg, Média Amp. Larg		. Larg	arg Peso Médio		Amp. Peso		
TAXA	N	Biomassa	omassa Larg. Média		>	Peso Medio	<	>
Ordem Characiformes								
Família Parodontidae								
Apareiodon piracicabae	8	310,99	$14,78 \pm 0,94$	11,3	18,5	38,87 ± 5,97	18,72	66,52
Família Erythrinidae								
Hoplias malabaricus	4	4439,5	40,30 ± 3,87	35,0	51,5	1109,88 ± 295,79	609,51	1949,61
Família Anostomidae								
Leporinus elongatus	7	778,48	$19,93 \pm 2,17$	11,0	27,5	111,21 ± 32,04	41,41	245,16
Leporinus friderici	8	3787,35	$35,93 \pm 7,15$	12,0	63,0	473,42± 154,36	17,02	1250,23
Leporinus obtusidens	13	409,78	$14,32 \pm 0,61$	11,0	18,1	31,52 ± 3,63	15,70	56,26
Schizodon nasutus	47	7855,61	22,31 ± 1,04	15,0	36,5	167,14 ± 24,95	31,26	524,47
Família Characidae								
Astyanax altiparanae	1252	20414,52	$10,23 \pm 0,01$	6,5	14,5	16,31 ± 0,05	7,35	55,00
Astyanax bockmanni	308	4557,92	$10,01 \pm 0,08$	7,0	14,5	$14,80 \pm 0,41$	4,32	53,62
Astyanax fasciatus	1450	28103,91	11,46 ± 0,03	7,5	16,0	19,38 ± 0,16	7,05	43,01
Astyanax paranae	94	1170,93	$9,80 \pm 0,09$	7,5	12,0	12,46 ± 0,36	8,01	25,00
Brycon nattereri	1	436,33	-	_	-	-	<u>-</u>	-
Galeocharax knerii	368	28248,98	19,25 ± 0,24	10,0	32,0	76,76 ± 3,89	9,55	318,93
Oligosarcus paranensis	68	2283,40	14,96 ± 0,22	10,6	18,3	33,58± 1,47	10,80	57,11
Acestrorhynchus lacustris	1	51,12	-	-	-	-	-	-
Família Salmininae								
Salminus hilarii	3	161,61	18,33 ± 0,60	17,5	19,5	53,87 ± 5,19	43,74	60,89
Ordem Siluriformes		,	,				,	
Família Heptapteridae								
Rhamdia quelen	8	2779,92	28,98 ± 3,49	14,0	41,7	347,49 ± 100,66	20,03	832,48
Família Pimelodidae		·		·	·		,	
Iheringichthys labrosus	45	1157,49	15,16 ± 0,41	10,6	23,0	25,72 ± 2,19	7,33	70,72
Pimelodus maculatus	22	4181,72	24,79 ± 1,91	12,8	45,0	190,08 ± 43,02	22,71	735,62
Pimelodus microstoma	3	407,39	129,10 ± 6,71	11,8	13,5	135,80 ± 118,62	15,39	373,03
Família Loricariidae				(7	
Hypostomus albopunctatus	12	1924,37	22,05 ± 2,09	13,2	33,0	160,36 ± 40,26	24,69	401,63
Hypostomus nigromaculatus	32	7121,61	$27,60 \pm 0,91$	11,2	34,5	222,55 ± 15,64	14,20	402,37
Hypostomus sp.	1	13,72	27,00 0,52	/-	-	-	-	-
Loricaria prolixa	1	210,24	_	_	_	_	_	-
Ordem Gymnotiformes	-							
Família Sternopygidae								
Eigenmannia virescens	1	18,11	_	_	-	_	_	_
Ordem Perciformes		10,11						
Família Cichlidae								
	Е	247.00	11 70 ± 2 75	7.0	22.5	40 F7 ± 26 22	E //1	104.61
Geophagus brasiliensis	5	247,88	11,78 ± 2,75	7,0	22,5	49,57 ± 36,33	5,41	194,61

Através da análise de cluster aos dados de abundância da ictiofauna, ao longo das 20 amostragens do presente monitoramento, foi possível separar a comunidade de peixes da PCH Presidente Vargas, em três grandes grupos (Figura 22). No grupo I, encontram-se agrupadas as espécies de maior representatividade numérica no presente estudo, composto pelas espécies dominantes e chaves na estruturação da comunidade ictiofaunística, *Astyanax altiparanae e Astyanax fasciatus*, em conjunto com *Astyanax bockmanni* e a saicanga *Galeocharax knerii*. No grupo II, estiveram presentes as espécies com abundâncias intermediárias, sendo representado por *Schizodon nasutus*, *Oligosarcus paranensis*, *Hypostomus nigromaculatus*, *Astyanax paranae*, e *Iheringichthys labrosus* (Figura 22).

O grupo III foi formado pelas espécies menos frequentes e com baixa expressividade numérica, compreendendo: *Apareiodon piracicabae, Leporinus friderici, Rhamdia quelen, Hypostomus albopunctatus, Leporinus obtusidens, Pimelodus maculatus, Hoplias malabaricus, Geophagus brasiliensis, Pimelodus microstoma e Leporinus elongatus, além de Brycon nattereri, Acestrorhynchus lacustris, Salminus hilarii, Hypostomus sp., Loricaria prolixa e Eigenmannia virescens* (Figura 22). Tais resultados reforçam a existência de relações interespecíficas de competição e segregação de nichos na composição da comunidade de peixes da PCH Presidente Vargas apresentada e amplamente discutida no presente estudo.

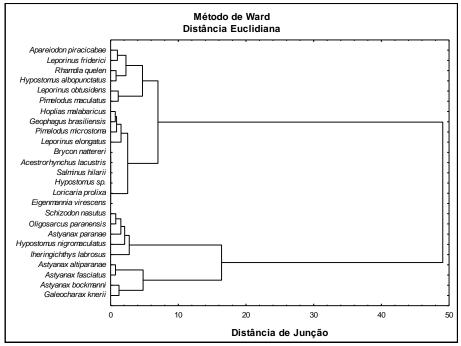


Figura 22. Dendrograma de agrupamento, com base nos dados de abundância das espécies de peixes capturadas nos pontos amostrais a montante (#3 e #4) e a jusante (#1 e #2) da PCH Presidente Vargas, ao longo das 20 amostragens.

Por fim, durante as 20 amostragens para o Programa de Monitoramento da Ictiofauna da PCH Presidente Vargas foi observada a presença da espécie *Brycon nattereri* (Günther, 1864), que se encontra listada como VU (vulnerável) na Lista das Espécies da Fauna Brasileira Ameaçadas de Extinção (MMA, 2008), Lista das Espécies da Fauna Ameaçadas de Extinção no Paraná (CURITIBA, 2006) e nas Instruções Normativas MMA Nº 5/2004/2005 e IN MMA Nº 445 de 17 de dezembro de 2014 (Tabela 7).

Esta espécie já havia sido relatada para a região, nos trabalhos de Shibatta *et al.* (2002), Langeani *et al.* (2007) e Shibatta *et al.* (2007), indicando que apesar dos impactos sofridos ao longo dos trechos do rio Tibagi, algumas áreas ainda se encontram relativamente preservadas. Como no caso do presente estudo, o ponto amostral 4, margeado por uma vegetação ciliar bem preservada, onde foi registrada a presença de *B. nattereri*.

Na 11ª campanha amostral foi registrada a ocorrência da tabarana *Salminus hilarii*, a qual se encontra classificada como quase ameaçada (NT) na lista de Espécies de peixes ameaçadas do Paraná (CURITIBA, 2006).

Tabela 7. Nomenclatura científica e vulgar e *status* de conservação das espécies capturadas no presente estudo, para o Programa de Monitoramento Ambiental da Ictiofauna da PCH Presidente Vargas.

Status de Conservação Nome **TAXA CURITIBA MMA MMA IUCN** Vulgar **Exótica** (2008)2006 (2014)(2016)**Ordem Characiformes** Família Parodontidae NC NC NC NC NÃO Apareiodon piracicabae (Eigenmann, 1907) canivete Família Erythrinidae Hoplias malabaricus (Bloch, 1794) traíra NC NC NC NC NÃO Família Anostomidae Leporinus elongatus Valenciennes, 1849 NC NC NC NC NÃO piapara piau 3 NÃO Leporinus friderici (Bloch, 1794) NC NC NC NC pintas NC NC NÃO NC I C Leporinus obtusidens (Valenciennes, 1847) piau NC NC NC NC NC Schizodon nasutus Kner, 1859 chimboré Família Characidae lambari-de-NÃO Astyanax altiparanae Garutti & Britski, 2000 rabo-NC NC NC. NC. amarelo Astyanax bockmanni Vari & Castro, 2007 lambari NC NC NC NC NÃO lambari-de-NC NC NC NC NÃO Astyanax fasciatus (Cuvier, 1819) rabovermelho NÃO Astyanax paranae Eigenmann, 1914 lambari NC NC NC NC VU NÃO VU VU Brycon nattereri Günther, 1864 pirapitinga NC NC NC NC NC NÃO Galeocharax knerii (Steindachner, 1879) saicanga NÃO NC NC NC Oligosarcus paranensis Menezes & Géry, 1983 saicanga NC NC NC NÃO Acestrorhynchus lacustris (Lütken, 1875) bocarra NC NC Subfamília Salmininae NÃO Salminus hilarii (Valenciennes, 1849) NC. NC NC tabarana NT **Ordem Siluriformes** Família Heptapteridae bagre, Rhamdia quelen (Quoy & Gaimard, 1824) NC NC NC NC NÃO jundiá Família Pimelodidae mandi-NÃO Iheringichthys labrosus (Kröyer, 1874) NC NC NC NC beicudo NÃO Pimelodus maculatus Lacépède, 1803 mandi NC NC NC NC NC Pimelodus microstoma Steindachner, 1877 NC NÃO mandi NC. Família Loricariidae Hypostomus albopunctatus (Regan, 1908) NÃO cascudo NC NC. NC. NC NÃO Hypostomus nigromaculatus (Schubart, 1964) cascudo NC NC NC NC Hypostomus sp cascudo cascudo-NC NC NC NC NÃO Loricaria prolixa Isbrücker & Nijssen, 1978 chinelo **Ordem Gymnotiformes**

	Nome	Status de Conservação					
TAXA	Vulgar	CURITIBA 2006	MMA (2008)	MMA (2014)	IUCN (2016)	Exótica	
Família Sternopygidae							
Eigenmannia virescens (Valenciennes, 1847)	tuvíra/ituí- transparente	NC	NC	NC	NC	NÃO	
Ordem Perciformes							
Família Cichlidae							
Geophagus brasiliensis (Quoy & Gaimard, 1824)	cará/acará	NC	NC	NC	NC	NÃO	

5 CONCLUSÕES

As ordens Characiformes e Siluriformes foram dominantes em número de espécies e abundância de exemplares no presente estudo, onde a predominância de Characidae esteve fundamentada na elevada contribuição das espécies *Astyanax fasciatus* e *Astyanax altiparanae*, possivelmente associada à grande capacidade adaptativa das mesmas.

Além destas, foi observada simpatria entre outras duas espécies do gênero *Astyanax*, (*Astyanax bockmanni* e *Astyanax paranae*) com participações distintas ao longo dos pontos amostrais, o que demonstrou as diferentes formas de ocupação ao longo do gradiente amostral, provavelmente em função das estratégias alimentares e utilização do espaço.

A partir das análises das amplitudes de comprimento, bem como, dos comprimentos médios das espécies capturadas, observou-se que a grande maioria dos exemplares apresentou pequeno porte, o que esteve de acordo com o encontrado ao longo dos sistemas de água doce sul-americanos.

Entre os pontos amostrais analisados, o ponto 4, caracterizado por apresentar águas mais calmas, margeado com uma mata ciliar bem preservada, aparentemente tem apresentado melhores condições para o desenvolvimento da assembleia de peixes local, contribuindo com as maiores abundâncias e diversidades de peixes, com quatro espécies exclusivas deste ambiente.

Dentre as espécies de peixes capturadas, foi observada a presença de *Brycon nattereri* (Günther, 1864), que se encontra listada como VU (vulnerável) na Lista das Espécies da Fauna Brasileira Ameaçadas de Extinção, indicando que alguns trechos do rio Tibagi, como por exemplo, o ponto amostral 4 (onde foi encontrada esta espécie), ainda apresentam-se relativamente preservados.

As principais mudanças na comunidade de peixes no presente estudo estiveram relacionadas à alternância entre a dominância das populações de *A. altiparanae* e *A. fasciatus* ao longo das 20 investidas amostrais. O predomínio foi da primeira (*A. altiparanae*), durante as coletas de dezembro de 2015 e redução na época de seca (março de 2016), bem como, em junho e setembro de 2016, devido às elevadas velocidades de corrente, o que esteve de acordo com a biologia da espécie. Apesar da grande capacidade adaptativa, essa espécie não se desenvolve plenamente em ambientes de elevadas correntezas. Tal diminuição, provavelmente tenha disponibilizado um nicho de espaço para a ocupação de *A. fasciatus* (possível competidora com *A. altiparanae*, pois geralmente explora os mesmos recursos, bem como, se distribui na mesma faixa da coluna d'água), que apresentou um aumento expressivo na abundância dos exemplares especialmente em junho de 2016.

Considerando a diversidade funcional destas duas espécies, levando em conta a anatomia do corpo, por apresentar um formato fusiforme, *A. fasciatus* caracteriza-se como melhor nadadora do que *A. altiparanae*, que possui o corpo mais alto, o que em caso de competição por espaço, muito provavelmente tenha beneficiado *A. fasciatus*, quando do aumento das velocidades de corrente em junho e setembro de 2016.

Além da alternância entre as populações de *A. fasciatus* e *A. altiparanae*, cabe ressaltar a flutuação dos Siluriformes ao longo do estudo, com destaque para os incrementos observados durante a quinta amostragem (dez/16), onde se observou um aumento na abundância de cascudos da família Loricaridae, muito provavelmente devido ao baixo nível apresentado pelos rios e deslocamento dos Astyanax para regiões mais profundas.

Nas amostragens realizadas em fevereiro de 2017 (sexta campanha) é importante mencionar a elevada participação das espécies carnívoras, com destaque para a saicanga *Galeocharax knerii*, que foi a segunda espécie mais abundante nas coletas, corroborando a importância das relações interespecíficas, especialmente vinculadas à alimentação/predação exercida pelas carnívoras, na estruturação das assembleias ícticas.

As amostragens de abril de 2017, não capturaram exemplares de peixes ao longo dos pontos amostrais, o que esteve relacionado com as atividades de manutenção da PCH Presidente Vargas, uma vez que o nível do rio se apresentava em alguns pontos, completamente sem água. Com o término da manutenção e restabelecimento do nível de água nos meses subsequentes foi observado um repovoamento da ictiofauna (campanha oito), entretanto, as abundâncias, bem como, o número de espécies, riqueza e diversidade

foram significativamente mais baixos se comparado com os períodos iniciais de monitoramento, o que apesar de esperado, (perante o impacto sofrido na comunidade), possa também estar relacionado com o furto das redes de coleta em dois dias seguidos nos pontos amostrais 3 e 4.

Em outubro de 2017, foram observados incrementos significativos no número e na diversidade de espécies ícticas na PCH, o que em conjunto com a análise da composição específica, demonstra uma recuperação da comunidade perante os impactos provenientes das atividades de manutenção da PCH, conforme supracitado. As coletas de janeiro e abril de 2018 seguiram esta mesma tendência de recuperação, com pequenos incrementos e oscilações nestes dois parâmetros, ao passo que em agosto de 2018, foi observada uma leve diminuição no número de indivíduos e espécies capturadas, muito possivelmente ao baixo volume do rio durante as amostragens, em virtude das estiagens, voltando a apresentar incrementos em outubro de 2018. Em janeiro de 2019, novamente o rio apresentava-se com baixa vazão, resultando em uma pequena abundância de peixes, o que foi igualmente observado em abril deste ano, onde foram capturados apenas 17 exemplares ao longo dos pontos amostrais da PCH Presidente Vargas. Em julho de 2019, foi observado um pequeno aumento, tanto no número de indivíduos capturados, quanto no número de espécies registradas, o qual se manteve constante até maio de 2020, com pequenos incrementos nos índices de diversidade e equitabilidade da comunidade. Em agosto de 2020, apesar das abundâncias terem se mantido constantes, apenas quatro espécies foram coletadas ao longos dos pontos amostrais da PCH, o que reduziu os índices de diversidade da comunidade ictiofaunística, muito provavelmente vinculadas as próprias variações naturais das espécies, onde é comum se observar menores rendimentos nos meses mais frios.

De um modo geral, até o presente momento, a comunidade ictiofaunística da Pequena Central Hidrelétrica de Presidente Vargas, parece ser moldada principalmente pela vazão do rio, seja de forma natural (regime de secas e inundações) ou antrópica (abertura das barragens, bem como, atividades de manutenção). Tais flutuações têm contribuído de forma direta no deslocamento das populações de peixes, nas relações interespecíficas e estruturação da comunidade, como demonstrado ao longo deste estudo.

Por fim, a composição específica observada no presente estudo, com 25 espécies levantadas para um trecho local da região média do rio Tibagi, parece se enquadrar no padrão de assembleias locais de peixes, dos sistemas de água doce neotropicais. Contudo, a continuidade das amostragens, provavelmente contribuirá para uma descrição mais

aproximada da composição da comunidade de peixes na região de estudo, que segundo pesquisadores renomados da região, ainda precisa ser exaustivamente explorada, pois é comum o aparecimento de novas espécies (corroborado com este estudo/monitoramento, visto a ocorrência da tabarana, *Salminus hilarii*, na 11ª e da bocarra, *Acestrorhynchus lacustris*, na 16ª coleta). Além disto, tais estudiosos são categóricos ao afirmar que para se avaliar e propor medidas de manejo eficazes para os possíveis impactos das atividades do setor elétrico sobre as diferente populações de peixes na bacia, é fundamental que se conheça a distribuição, além dos padrões de utilização dos diferentes ambientes ao longo da bacia, reforçando a importância na continuidade dos estudos na região.

6 REFERÊNCIAS BIBLIOGRÁFICAS

ARAÚJO-LIMA, C. A. R., AGOSTINHO, A. A. & FABRÉ, N. N. 1995. Trophic aspects of fish communities in Brazilian rivers and reservois. *In* TUNDISI, J. G.; BICUDO, C. E. M.; MATSUMURA-TUNDISI, T (Ed). Limnology in Brazil. Rio de Janeiro: ABC/SBL. P 105-136.

AZPELICUETA, M. de las. M. & BRITSKI, H. A. 2012. *Iheringichthys syi* (Siluriformes: Pimelodidae), a new pimelodidae species from upper Paraná basin, Brazil. Neotropical Ichthyology, 10(1): 45-52.

BAUMGARTNER, G., PAVANELLI, C. S., BAUMGARTNER, D., BIFI, A. G., DEBONA, T. & FRANA, V. A. 2012. Peixes do baixo rio Iguaçu [online]. Maringá: Eduem, 2012. 203 p. ISBN 978-85-7628-586-1. Available from SciELO Books http://books.scielo.org.

BENNEMANN, S. T., SILVA-SOUZA, A. T. & ROCHA, G. R. A. 1995. Composicion ictiofaunistica en cinco localidades de la cuenca del rio Tibagi PR - Brasil. Interciencia, 20: 7-13.

BENNEMANN, S. T., SHIBATTA, O. A. & GARAVELLO, J. C. 2000. Peixes do rio Tibagi: uma abordagem ecológica. Londrina, Ed UEL. 62p.

BENNEMANN, S. T. & SHIBATTA, O. A. 2002. Dinâmica de uma assembléia de peixes do rio Tibagi. *In:* MEDRI, M. E.; BIANCHINI, E.; SHIBATTA, O. A. & PIMENTA, J. A. Eds. A bacia do rio Tibagi. Londrina, Universidade Estadual de Londrina. p. 433-442.

BENNEMANN, S. T., GEALH, A. M., ORSI, M. L. & SOUZA, L. M. 2005. Ocorrência e ecologia trófica de quatro espécies de *Astyanax* (Characidae) em diferentes rios da bacia do rio Tibagi, Paraná, Brasil. Iheringia, Sér. Zool., Porto Alegre, 95(3): 247-254.

BONETTO, A. A. 1986. The Paraná river system. *In* The ecology of river systems (B.R. Davies & K.F. Walker, eds.). Dr. W. Junk Publishers, Dordrecht, p. 541-555.

BRITO, S. G. C., SIROL, R. N.; VIANNA, N. C., JARDIM, M. S., dos SANTOS, J. C. & PELISARI, E. 2008. Peixes do rio Paranapanema. Editora Horizonte, p. 120.

BRITSKI, H. A. 1972. Peixes de água doce do estado de São Paulo. *In:* Comissão Internacional da Bacia Paraná – Paraguai. Poluição e piscicultura. São Paulo, Faculdade de Saúde Pública da USP e Instituto de Pesca. p.79-108.

BRITSKI, H. A., BIRINDELLI, J. L. O., GARAVELLO, J. C. A new species of *Leporinus agassiz*, 1829 from the upper Rio Paraná basin (Characiformes, Anostomidae) with redescription of *L. elongates* Valenciennes, 1850 and *L. obtusidens* (Valenciennes, 1837). Papéis Avulsos de Zoologia. 52(37): 441-475, 2012.

BUCKUP, P.A., MENEZES, N. A. & GHAZZI, M. S. 2007. Catálogo das espécies de peixes de água doce do Brasil. Rio de Janeiro, Museu Nacional.

CASATTI, L., LANGEANI, F. & CASTRO, R. M. C. 2001. Peixes de riacho do Parque Estadual Morro do Diabo, bacia do Alto Rio Paraná, SP. Biota Neotropica 1: 1-15

CASTRO, R. M. C. 1999. Evolução da ictiofauna de riachos sul-americanos: padrões gerais e possíveis processos causais. In Ecologia de peixes de riachos (E.P. CARAMASCHI, R. MAZZONI & P. R. PERES-NETO, Eds.). Série Oecologia Brasiliensis, PPGE-UFRJ, Rio de Janeiro, p.139-155.

CASTRO, A. C. L. 2001. Diversidade da assembléia de peixes em Igarapés do estuário do rio Paciência (MA – Brasil). Atlântica, Rio Grande, 23: 39-46.

CASTRO, R. M. C., CASATTI, L., SANTOS, H. F., FERREIRA, K. M., RIBEIRO, A.C., BENINE, R. C., DARDIS, G. Z. P., MELO, A. L. A., STOPIGLIA, ABREU, T. X., BOCKMANN, F. A., CARVALHO, M., GIBRAN, F. Z. & LIMA, F. C. T. 2003. Estrutura e composição da ictiofauna de riachos do Rio Paranapanema, sudeste e sul do Brasil. Biota Neotropica 3:1-31.

COX, C. B. & MOORE, P. D. 2000. Biogeography, an ecological and evolutionary approach. Blackwell Science, London.

CURITIBA, 2006. Fauna do Paraná em Extinção. Instituto Ambiental do Paraná, 272p.

DE FRANÇA, V. 2002. O rio Tibagi no contexto hidrográfico parananense. *In* A bacia do rio Tibagi (M.E. Medri, E. Bianchini, O.A. Shibatta & J.A. Pimenta, eds.). M. E. Medri, Londrina, p.45-61.

FERREIRA, E. J. G. 1993. Composição, distribuição e aspectos ecológicos da ictiofauna de um trecho do rio Trombetas, na área de influência da futura UHE Cachoeira Porteira, Estado do Pará, Brasil. Acta Amazonica 23(Supl.1/4): 1-88.

GARAVELLO, J. C.; BRITSKI, H. A. & ZAWADZKI, C. H. 2012. The cascudos of genus *Hypostomus* Lacépéde (Ostariophysi: Loricariidae) from the rio Iguaçu basin. Neotropical Ichthyology, 10(2): 263-283.

HOFFMANN, A. C., ORSI, M. L., SHIBATTA, O. A. 2005. Diversidade de peixes do reservatório da UHE Escola Engenharia Mackenzie (Capivara), rio Paranapanema, bacia do alto rio Paraná, Brasil e a importância dos grandes tributários na sua manutenção. Iheringia, Série Zoologia, Porto Alegre, 95:3 319-325.

HOFFMANN, A. C., NASCIMENTO, R. H. C. & SHIBATTA, O. A. 2015. Fish fauna from tributaries throughout the Tibagi River basin, upper Paraná basin, Brazil. Check List 11(6): 1815, doi: http://dx.doi.org/10.15560/11.6.1815 ISSN 1809-127X ©.

IUCN, 2016. http://www.iucnredlist.org/. Acesso em 20 de janeiro de 2016.

INGENITO, L .F. S., DUBOC, L. F. & ABILHOA, V. 2004. Contribuição ao conhecimento da ictiofaunada bacia do alto rio Iguaçu, Paraná, Brasil. Arquivos de Ciências Veterinárias e Zoologia da UNIPAR, Umuarama,7(1):1 23-36.

LANGEANI, F., CASTRO, R. M. C., OYAKAWA, O. T., SHIBATTA, O. A., PAVANELLI, C. S. & CASATTI, L. 2007. Diversidade da ictiofauna do Alto rio Paraná: composição atual e perspectivas futuras. Biota Neotropica. 7(3): http://www.biotaneotropica.org.br/v7n3/pt/abstract?article+bn03407032007

LOWE-McCONNELL, R. H. 1999. Estudos ecológicos de comunidades de peixes tropicais. Editora da Universidade de São Paulo, São Paulo, Brasil, 534 p.

LYONS, J., NAVARRO-PÉREZ, S., COCHRAN, P. A., SANTANA, C. & GUZMÁN-ARROYO, M. 1995. Index of biotic integrity based on fish assemblages for the conservation of streams and rivers in west-central México. Cons. Biol. 9(3): 569-584.

MARCENIUK, A. P., HILSDORF, A. W. da SILVA. & LANGEANI, F. 2011. A ictiofauna de cabeceiras do rio Tietê, São Paulo, Brasil. Biota Neotropica. 11(3): http://www.biotaneotropica.org.br/v11n3/en/abstract?inventory+bn00311032011.

MATTHEWS, W.J. 1998. Patterns in freshwater fish ecology. Thomson Publ. Chapman & Hall, New York.

NELSON, J. S. 2006. Fishes of the world. John Wiley & Sons, New York.

ORSI, M. L.; CARVALHO, E. D. & FORESTI, F. 2004. Biologia populacional de *Astyanax altiparanae* Garutti & Britski 2000 (Teleostei, Characidae) do médio rio Paranapanema, Paraná, Brasil. Revista Brasileira de Zoologia 21(2):207-218.

PELICICE, F. M., AGOSTINHO, A. A. & GOMES, L. C. 2005. Biodiversidade e conservação de peixes na planície de inundação do alto rio Paraná. Caderno de Biodiversidade. 5(1): 34-44.

PEREIRA, M. C. B. & SCROCCARO, J. S. 2010. Bacias Hidrográficas do Paraná: Série Histórica. SEMA-PARANÁ.

RAIO, C. B. & BENNEMANN, S. T. 2010. A ictiofauna da bacia do rio Tibagi e o projeto de construção da UHE Mauá, Paraná, Brasil. Semina: Ciências Biológicas da Saúde, Londrina. 31(1): 15-20.

REIS, R. E., KULLANDER, S. O. & FERRARIS-JR., C. J. 2003. Check list of the freshwater fishes of South and Central America. EDIPUCRS, Porto Alegre.

RIBEIRO, F.R.V. & LUCENA, C.A.S. 2007. *Pimelodus microstoma* Steindachner, 1977, a valid species of pimelodid catfish (Siluriformes: Pimelodidae) from the upper rio Paraná drainage. Neotropical Ichthyology 5(1):75-78.

ROSA, R. S. & LIMA, F, C. T. 2008. Os Peixes Brasileiros Ameaçados de Extinção. p. 278.

SANT'ANNA, J. F. M., ALMEIDA, M. C., VICARI, M. R., SHIBATTA, O. A. & ARTONI, R. F. 2006. Levantamento rápido de peixes em uma lagoa marginal do rio Imbituva na bacia do alto rio Tibagi, Paraná, Brasil. Biologia e Saúde, Ponta Grossa. 12 (1): 39-46.

SCHAEFER, S. A. 1998. Conflict and resolution: impact of new taxa on phylogenetic studies of the neotropical cascudinhos (Siluroidei: Loricariidae). In: Malabarba LR, Reis RE, Vari RP, Lucena ZMS, Lucena CAS (ed). Phylogeny and Classification of Neotropical Fishes. Porto Alegre, EDIPUCRS, p: 375-400.

SHIBATTA, O. A.; ORSI, M. L.; BENNEMANN, S. T. & SILVA-SOUZA, A. 2002. Diversidade e distribuição de peixes na bacia do rio Tibagi. In: MEDRI, M. E.; BIANCHINI, E.; SHIBATTA, O. A. & PIMENTA, J. A. 2002. A bacia do rio Tibagi. Londrina, Universidade Estadual de Londrina. p 403-423.

SHIBATTA, O. A.; GEALH, A. M. & BENNEMANN, S. T. 2007. Ictiofauna dos trechos alto e médio da bacia do rio Tibagi, Paraná, Brasil. Biota Neotropical. 7(2): 125-134.

VARI, R. P. & CASTRO, R. M. C. 2007. New Species of *Astyanax* (Ostariophysi: Characiformes: Characidae) from the Upper Rio Paraná System, Brazil. Copeia. (1): 150-162. http://dx.doi.org/10.1643/0045-8511(2007)7[150:NSOAOC]2.0.CO;2

VAZZOLER, A. E. A. M. 1996. Biologia de reprodução de peixes teleósteos: teoria e prática. Maringá, SBI/EDUEM, 129p.

YÁÑEZ-ARANCIBIA, A. 1985 The estuarine nekton: why and how an ecological monograph. Preface. In: Yáñez-Arancibia, A. Fish community ecology in estuaries and coastal lagoons: towards an ecosystem integration. Mexico: UNAM, p. 1-8.

Klabin Celulose S.A.

Monitoramento da Ictiofauna da Pequena Central Hidrelétrica Presidente Vargas, Município de Telêmaco Borba, Paraná.

SUMÁRIO

1.	EQUIPE TÉCNICA
2.	INTRODUÇÃO
3.	MATERIAIS E MÉTODOS
3.1	Área de estudo
3.2	Trabalho de Campo 3-10
3.2	Trabalho de Laboratório
3.3	Análise dos dados 3-15
4	RESULTADOS E DISCUSSÃO
5	CONCLUSÕES 3-50
6	REFERÊNCIAS BIBLIOGRÁFICAS

LISTA DE FIGURAS

Figura1. Localização da PCH Presidente Vargas, em relação ao rio Tibagi e as cidades de Ortigueira e Telêmaco Borba
Figura 2. Localização dos pontos de coleta da ictiofauna do rio Tibagi - Programa de Monitoramento da Ictiofauna da PCH Presidente Vagas
Figura 3. Caracterização fotográfica dos pontos de coleta da ictiofauna do rio Tibagi - Programa de Monitoramento da Ictiofauna da PCH Presidente Vagas (a) #1, (b) #2, (c) #3 e (d) # 4)
Figura 4. Demonstração das amostragens com redes de espera para coleta da ictiofauna, no rio Tibagi (a, b) e a despesca feita pela equipe de pesquisadores (c e d)3-13
Figura 5. Demonstração das amostragens com tarrafa para coleta da ictiofauna, no rio
Figura 6. Demonstração das amostragens com covos para coleta da ictiofauna, no rio Tibagi
Figura 7. Demonstração das amostragens com Kicknet para coleta da ictiofauna, no rio
Figura 8. Registro fotográfico dos exemplares capturados: (a) Apareiodon piracicabae; (b) Hoplias malabaricus; (c) Leporinus elongatus; (d) Leporinus friderici; (e) Leporinus obtusidens; (f) Schizodon nasutus; (g) Brycon nattereri; (h) Astyanax altiparanae3-21
Figura 9. Registro fotográfico dos exemplares capturados: (a) Astyanax bockmanni; (b) Astyanax fasciatus; (c) Astyanax paranae; (d) Galeocharax knerii; (e) Oligosarcus paranensis; (f) Rhamdia quelen; (g) Iheringichthys labrosus e (h) Pimelodus maculatus
Figura 10. Registro fotográfico dos exemplares capturados: (a) <i>Pimelodus microstoma</i> ; (b) <i>Hypostomus albopunctatus</i> ; (c) <i>Hypostomus nigromaculatus</i> ; (d) <i>Hypostomus sp</i> ; (e) <i>Loricaria prolixa</i> ; (f) <i>Eigenmannia virescens</i> , (g) <i>Geophagus brasiliensis</i> e (h) <i>Salminus hilarii</i>
Figura 11. Registro fotográfico dos exemplares capturados: (a) <i>Acestrorhynchus</i> lacustris
Figura 12. Contribuição percentual em número de indivíduos para as principais famílias de peixes, capturadas nas áreas a montante e a jusante da PCH Presidente Vargas, nas

rigura 13. Contribuição percentual em numero de individuos para as principais especies de peixes, capturadas nas áreas a montante e a jusante da PCH Presidente Vargas, durante o período de estudo3-26
Figura 14. Variação média do número de indivíduos (a) e riqueza de espécies de peixes (b), nos pontos amostrais a montante (#3 e #4) e a jusante (#1 e #2) da PCH Presidente Vargas, nas 21 campanhas realizadas. O retângulo dentral indica a média e a caixa representa a variação do erro padrão em torno da média
Figura 15. Contribuição percentual em número de indivíduos para as principais espécies de peixes, capturadas nas áreas a montante e a jusante da PCH Presidente Vargas, nas amostragens de dezembro de 2015 (a), março (b), junho (c) setembro (d) e dezembro (e) de 2016; fevereiro (f), julho (g) e outubro de 2017 (h); janeiro (i), abril (j), agosto (k) e outubro (l) de 2018; janeiro (m), abril (n), julho (o), setembro (p) de 2019 e fevereiro (q), maio (r), agosto (s) e novembro (t) de 2020
Figura 16. Variação média do número de indivíduos (a), número de espécies de peixes (b), diversidade (c) e equitabilidade (d), nas áreas a montante e a jusante da PCH Presidente Vargas, nas 21 campanhas realizadas. O retângulo dentral indica a média e a caixa representa a variação do erro padrão em torno da média
Figura 17. Distribuição de frequência por classe de comprimento para <i>Astyanax</i> altiparanae, nos pontos amostrais a montante (#3 e #4) e a jusante (#1 e #2) da PCH Presidente Vargas, nas 21 campanhas realizadas
Figura 18. Variação média do número de indivíduos de Astyanax altiparanae, por ponto amostral (a) e ao longo do gradiente temporal de amostragem (b). O retângulo central indica a média e a caixa representa a variação do erro padrão em torno da média3-42
Figura 19. Distribuição de frequência por classe de comprimento para <i>Astyanax fasciatus,</i> nos pontos amostrais a montante (#3 e #4) e a jusante (#1 e #2) da PCH Presidente Vargas, nas 21 campanhas realizadas
Figura 20. Variação média do número de indivíduos de Astyanax fasciatus por ponto amostral (a) e ao longo do gradiente temporal de amostragem (b). O retângulo central indica a média e a caixa representa a variação do erro padrão em torno da média3-45
Figura 21. Dendrograma de agrupamento, com base nos dados de abundância das espécies de peixes capturadas nos pontos amostrais a montante (#3 e #4) e a jusante (#1 e #2) da PCH Presidente Vargas, ao longo das 21 amostragens3-47

LISTA DE TABELAS

Tabela 1. Coordenadas UTM e caracterização dos pontos de amostragem da Ictiofauna da PCH Presidente Vargas3-12
Tabela 2. Relação das espécies de peixes e suas respectivas frequências em número, nas áreas a montante e a jusante da PCH Presidente Vargas, durante as campanhas de dezembro de 2015 (D), março (M), junho (J), setembro (S) e dezembro (D) de 2016
Tabela 3. Relação das espécies de peixes e suas respectivas frequências em número, nas áreas a montante e a jusante da PCH Presidente Vargas, durante as campanhas de fevereiro (F), abril (A), julho (J) e outubro (O) de 2017; janeiro (J), abril (A), agosto (A) e outubro (O) de 2018
Tabela 4. Relação das espécies de peixes e suas respectivas frequências em número, nas áreas a montante e a jusante da PCH Presidente Vargas, durante as campanhas de janeiro (J), abril (A), julho (J) e setembro de 2019 (S); fevereiro (F), maio (M); agosto (A) e novembro (N) de 2020
Tabela 5. Relação das espécies de peixes e suas respectivas frequências em número, por petrecho amostral, nas áreas a montante e a jusante da PCH Presidente Vargas, durante as 21 campanhas realizadas3-38
Tabela 6. Frequência de ocorrência absoluta (N), Biomassa (g), Comprimento Médio total, Amplitude de Comprimento, Peso Médio total e Amplitude de Peso, das espécies de peixes capturadas nas áreas a montante e a jusante da PCH Presidente Vargas, nas 21 campanhas amostrais
Tabela 7. Nomenclatura científica e vulgar e <i>status</i> de conservação das espécies capturadas no presente estudo, para o Programa de Monitoramento Ambiental da Ictiofauna da PCH Presidente Vargas3-49

1. EQUIPE TÉCNICA

Nome	Formação	Área de atuação	Registro IBAMA	Registro Profissional
Josiane Rovedder, MSc.	Bióloga	Coordenadora Geral, Responsável Técnica e Geoprocessamento	355459	CRBIO 45049/03-D
Martin Homelchin	Eng° Ambiental	Coleta e Logística	1509629	CREA-SC 079803-6
Felipe Freitas Junior, MSc.	Oceanógrafo	Responsável pela Ictiofauna	2253655	AOCEANO 2224
Juliano Cesar Hillesheim	Biólogo	Responsável pela Ictiofauna	501518	CRBIO 53781-03D

2. INTRODUÇÃO

Atualmente são conhecidas 1,8 milhão de espécies de organismos vivos (COX & MOORE, 2000), dos quais aproximadamente 55.000 são vertebrados, e dentre estes, cerca de 28.000 são peixes (NELSON, 2006). A maior parte dessa riqueza e diversidade se encontra em águas tropicais (LOWE-MACCONNELL, 1999), especialmente em águas doces neotropicais, habitadas por algo estimado em 5.000 espécies válidas de peixes, podendo chegar a 8.000 se inclusas as novas espécies já reconhecidas por especialistas, porém ainda não descritas na literatura científica (SCHAEFER, 1998 e REIS *et al.* 2003). Grande parte destas espécies ocorre no Brasil, para onde foram registradas 2.587 espécies de peixes (BUCKP *et al.*, 2007), sendo que para a Bacia Hidrográfica do rio Paraná são descritas aproximadamente 600 espécies de peixes (BONETTO, 1986).

Os peixes constituem umas das principais razões do interesse do homem pelo estudo de ecossistemas aquáticos. Destacam-se entre os principais recursos potencialmente exploráveis nestes ambientes, pelo expressivo suprimento de proteínas e pela notável biomassa disponível, variando sua composição e abundância relativa em função das características hidrológicas, de acordo com a localidade e a variação sazonal (CASTRO, 2001). Além disto, desempenham um importante papel ecológico, transformando o potencial energético dos detritos ao conduzir a energia para níveis tróficos superiores (YAÑEZ-ARANCIBIA, 1985). Podem ainda ser utilizados como indicadores de qualidade ambiental, como sugerido por Lyons *et al.* (1995), onde riachos com boas condições de integridade tendem a ser ocupados por espécies de peixes nativas com várias classes de tamanho e estrutura trófica balanceada, com desaparecimento das espécies mais sensíveis e alteração nesta estrutura na medida em que a influência antrópica aumenta.

O rio Tibagi, no qual está inserida a Pequena Central Hidrelétrica Presidente Vargas, possui 550 quilômetros de extensão com cerca de 90 saltos e cachoeiras, tendo sua nascente localizada na Serra das Almas entre Ponta Grossa e Palmeira, a 1.100 metros de altitude, desaguando no reservatório da Usina Hidrelétrica de Capivara, no rio Paranapanema, a 298 m de altitude (PEREIRA & SCROCCARO, 2010). É considerada a terceira maior bacia do Estado do Paraná e o maior afluente paranaense do rio Paranapanema, abrangendo ao longo de sua extensão, uma grande diversidade de ambientes sob matriz de florestas (Ombrófila Mista e Estacional Semidecidual), intercaladas com encraves de savanas (Cerrado) e estepes (Campos) que se manifestam de acordo com as gradações altitudinal e orográfica (DE FRANÇA, 2002).

Segundo Raio e Bennemann (2010), o rio Tibagi é um dos poucos da região que vêm sendo estudado desde a década de 80, e apesar de apresentar uma elevada diversidade de peixes, vem sendo exposto a diversos impactos antrópicos ao longo de sua extensão (especialmente relacionados à construção de empreendimentos do setor elétrico), resultando em uma diminuição na abundância de peixes. Dados históricos revelam que durante as primeiras incursões a campo para caracterizar a ictiofauna deste rio, foram observadas 69 espécies de peixes (BENNEMANN *et al.*, 1995). Estudos complementares ao longo de seus afluentes e subafluentes vêm demonstrando um incremento no conhecimento da ictiofauna local, sendo catalogadas 110 espécies de peixes nos trabalhos de Shibatta *et al.* (2002), alcançando 151 espécies no estudo de Raio e Bennemann (2010).

Considerando a importância ecológica e econômica (pesca artesanal e recreacional) da ictiofauna, bem como a questão emblemática da instalação de empreendimentos do setor elétrico, com possíveis interferências nestas comunidades faunísticas, o presente trabalho tem como objetivo identificar e quantificar as espécies de peixes presentes nas regiões à jusante e a montante da barragem da Pequena Central Hidrelétrica – PCH Presidente Vargas, durante as campanhas de dezembro de 2015; março, junho, setembro e dezembro de 2016; fevereiro, abril, julho e outubro de 2017; janeiro, abril, agosto e novembro de 2018; janeiro, abril, julho e setembro de 2019; fevereiro, maio, agosto e novembro de 2020. Os resultados obtidos até o momento foram confrontados com o conhecimento técnico-científico disponível para a região comparando a informação obtida com dados pretéritos.

3. MATERIAIS E MÉTODOS

3.1 Área de estudo

A Pequena Central Hidrelétrica Presidente Vargas está localizada no rio Tibagi, na divisa dos municípios de Telêmaco Borba e Ortigueira (Figura 1). Foi licenciada com objetivo de atender às necessidades das indústrias da Klabin e de alguns núcleos habitacionais da região, como Lagoa e Harmonia, na Fazenda Monte Alegre. O reservatório da PCH possui uma área equivalente a 7,64 hectares, limitada a norte pela sua barragem e a sul pela barragem da Usina Hidrelétrica Mauá. A bacia hidrográfica que drena diretamente para o reservatório da PCH Presidente Vargas corresponde a uma área de 351 hectares, algo em torno de 0,014% da bacia do rio Tibagi.

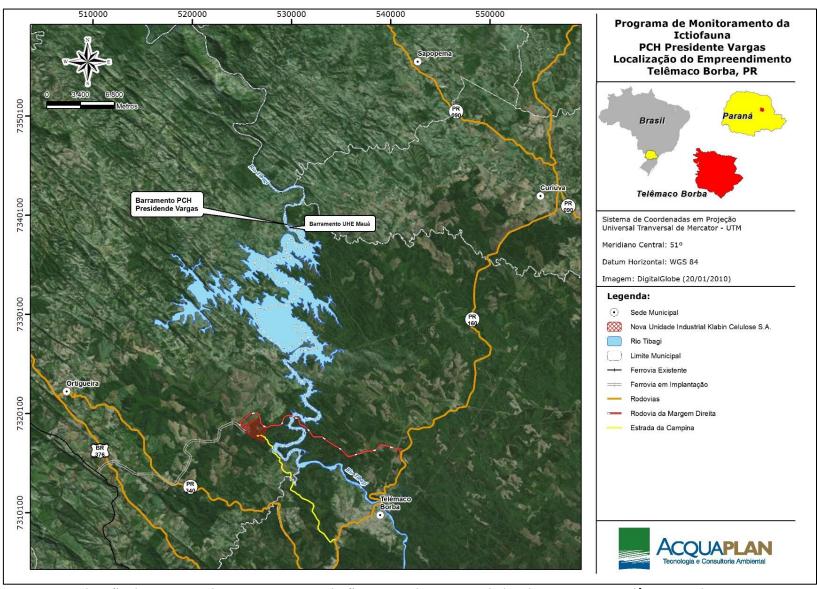


Figura 1. Localização da PCH Presidente Vargas, em relação ao rio Tibagi e as cidades de Ortigueira e Telêmaco Borba.

3.2 Trabalho de Campo

O presente relatório contempla 21 amostragens trimestrais, para o monitoramento da ictiofauna nos pontos a montante (# 3 e #4) e a jusante (# 1 e # 2) da barragem da PCH Presidente Vargas (Tabela 1, Figura 2 e Figura 3). As coletas foram realizadas entre os dias 16 a 18 de dezembro de 2015 (primeira coleta), 19 a 21 de março de 2016 (segunda coleta), 25 a 27 de junho de 2016 (terceira coleta), 19 a 21 de setembro de 2016 (quarta coleta), 10 a 12 de dezembro de 2016 (quinta coleta), 23 a 25 de fevereiro de 2017 (sexta coleta), 19 a 21 de abril de 2017 (sétima coleta), 29 a 31 de julho de 2017 (oitava coleta), 28 a 30 de outubro de 2017 (nona coleta), 20 a 22 de janeiro de 2018 (décima coleta), 23 a 25 de abril de 2018 (décima primeira coleta), 15 a 17 de agosto de 2018 (décima segunda coleta), 24 a 26 de outubro de 2018 (décima terceira coleta), 31 de janeiro a 02 de fevereiro de 2019 (décima quarta coleta), 24 a 26 de abril de 2019 (décima quinta coleta), 02 a 04 de julho de 2019 (décima sexta coleta), 24 a 26 de setembro de 2019 (décima sétima coleta), 10 a 12 de fevereiro de 2020 (décima oitava coleta), 12 a 14 de maio de 2020 (décima nona coleta), 29 a 31 de agosto de 2020 (vigésima coleta) e 28 a 30 de dezembro de 2020 (vigésima primeira coleta), com auxílio de redes de espera, tarrafas, covos e kicknet, nas áreas marginais dos pontos amostrais (Figura 4 e Figura 7).

Devido à elevada vazão da água, não foi possível realizar as coletas no ponto amostral 3, no período de 25 a 27 de junho de 2016. Na quarta coleta, também não foi amostrado no dia 21 de setembro de 2016, em todos os pontos amostrais, em decorrência da abertura das comportas, o que ocasionou o carreamento das redes utilizadas na amostragem. Por outro lado, para a sétima amostragem (19 a 21 de abril de 2017), não foi possível a captura de exemplares ao longo dos pontos amostrais, em virtude da atividade de manutenção da PCH Presidente Vargas, onde o reservatório foi abaixado para o leito original do rio, deixando o canal de fuga completamente sem água. Na oitava campanha, no segundo e terceiro dia de amostragens (dias 30 e 31 de julho de 2017), foram furtadas as redes de espera nos pontos amostrais #03 e #04.

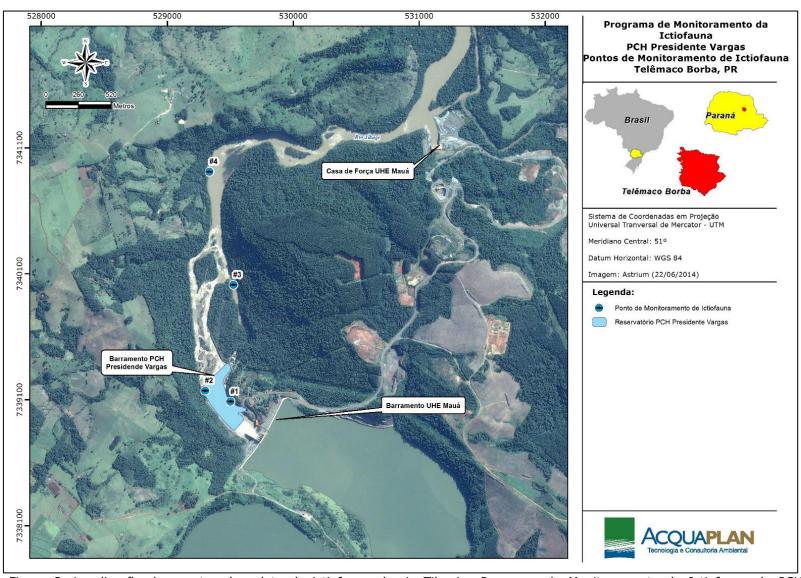


Figura 2. Localização dos pontos de coleta da ictiofauna do rio Tibagi - Programa de Monitoramento da Ictiofauna da PCH Presidente Vagas.

Tabela 1. Coordenadas UTM e caracterização dos pontos de amostragem da Ictiofauna da PCH Presidente Vargas.

Ponto	UTM WGS84 22S		Caracterização dos Bontos amostrais
Polito	X	Y	Caracterização dos Pontos amostrais
#1	529503,5	7339085	Ponto mais próximo a PCH, com profundidade entre 2 a 3 metros, fundo rochoso, bem próximo a corredeiras, entretanto as amostragens foram realizadas num trecho da margem com característica mais próxima de um rio semi-lótico, margeada por vegetação de médio e grande porte.
#2	529301,9	7339171	Profundidade de 3 metros, com fundo mais arenoso, margeada por vegetação de médio e grande porte. Coletas realizadas na margem, porém com velocidade de corrente superior ao ponto 1.
#3	529526,5	7340012	Profundidade entre 2 a 3 metros, com substrato rochoso e elevada velocidade de água, com características lóticas (corredeira).
#4	529336,4	7340911	Ponto mais distante da PCH, e com águas mais calmas (características semli-lóticas), profundidade entre 1,5 a 3 metros, com substrato arenoso, margeado por mata ciliar bem preservada e vegetação de médio a grande porte.

Figura 3. Caracterização fotográfica dos pontos de coleta da ictiofauna do rio Tibagi - Programa de Monitoramento da Ictiofauna da PCH Presidente Vagas (a) #1, (b) #2, (c) #3 e (d) #4.

Para a captura dos exemplares da ictiofauna foram armadas três redes de espera, com malhas de 4 cm, 8 cm e 14 cm entre nós opostos, em cada um dos quatro pontos

amostrais, totalizando 12 redes, as quais permaneceram submersas por um período de 72 h, com intervalo de 24 horas entre as despescas (Figura 4a, b, c e d).

Figura 4. Demonstração das amostragens com redes de espera para coleta da ictiofauna, no rio Tibagi (a, b) e a despesca feita pela equipe de pesquisadores (c e d).

Foram ainda realizados a cada amostragem 40 lances de tarrafa (malha de 1,5 cm ente nós opostos), sendo 10 em cada ponto amostral (Figura 5) bem como, armado uma armadilha tipo covo para captura de peixes (Figura 6), em cada ponto (4 no total), durante um período de 12 horas, com intervalo de seis horas entre as revisões e realizados lances com o kicknet (Figura 7) durante 15 minutos em cada ponto de amostragem.

Os peixes capturados foram então acondicionados em sacos plásticos devidamente etiquetados por ponto amostral, fixados em solução de formalina a 10% e posteriormente transportados ao laboratório.

Figura 5. Demonstração das amostragens com tarrafa para coleta da ictiofauna, no rio Tibagi.

Figura 6. Demonstração das amostragens com covos para coleta da ictiofauna, no rio Tibagi.

Figura 7. Demonstração das amostragens com Kicknet para coleta da ictiofauna, no rio Tibagi.

3.2 Trabalho de Laboratório

Em laboratório, os peixes foram identificados ao menor nível taxonômico possível utilizando guias de identificação especializados, onde foi registrado o número de

exemplares e realizada a biometria, em que foram mensurados o comprimento total (Lt) em centímetros, obtido entre a ponto do focinho até a extremidade da nadadeira caudal e o peso total (Wt) em gramas. Cada indivíduo foi também fotografado.

Todas as espécies coletadas foram classificadas com relação ao seu grau de ameaça, consultando a Lista das Espécies da Fauna Brasileira Ameaçadas de Extinção (ROSA & LIMA, 2008), Lista das Espécies da Fauna Ameaçadas de Extinção no Paraná (CURITIBA, 2006) e União Internacional de Conservação da Natureza – IUCN (IUCN, 2016).

A classificação taxonômica, nomenclatura científica e popular seguiu os trabalhos de Casatti *et al.* (2001), Castro *et al.* (2003), Shibatta *et al.* (2002, 2007), Ingenito *et al.* (2004), Vari & Castro, (2007) Ribeiro & Lucena, (2007), Brito *et al.* (2008), Marceniuk *et al.* (2011), Britski *et al.* (2012), Azpelicueta & Britski (2012), Baumgartner *et al.* (2012), Garavello *et al.* (2012) e Hoffmann *et al.* (2015).

3.3 Análise dos dados

Os dados obtidos foram tabelados no programa Excel, sendo confeccionada uma tabela com a abundância de organismos capturados durante o estudo. A medida de abundância foi considerada como o número total de peixes coletados em cada ponto amostral.

Para a análise da diversidade específica foram utilizados os Índices de Shannon-Wiener (H'), dado pela equação:

$$H' = -\sum_{i=1}^{S} (pi) \ln(pi)$$

Para o cálculo da equitabilidade foi utilizado o Índice de Pielou (J'), dado por:

$$J' = \frac{H'}{\ln(S)}$$

A riqueza de espécies foi calculada através do Índice de Margalef:

$$d = \frac{(S-1)}{\ln(N)}$$

Onde S é o número de espécies, n é o número total de indivíduos e ni é o número de indivíduos da espécie i.

A partir dos dados de comprimento total (Lt) foram confeccionados gráficos com as distribuições de frequência por classe de comprimento total, a fim de se caracterizar a estrutura populacional das espécies dominantes.

4 RESULTADOS E DISCUSSÃO

Durante o período de dezembro de 2015 a novembro de 2020, foi capturado um total 3.913 exemplares de peixes, nas áreas a montante e a jusante da pequena hidrelétrica PCH Presidente Vargas, os quais estiveram distribuídos em quatro ordens, dez famílias, 17 gêneros e 25 espécies, perfazendo um total de 127.150,01 gramas (Tabela 2, Tabela 3, Tabela 4 e Tabela 5). O registro fotográfico de todas as espécies capturadas encontrase na Figura 8, Figura 9, Figura 10, Figura 11.

Num contexto regional, levantamentos realizados ao longo da bacia do rio Tibagi, têm demonstrado um incremento em número de espécies ao longo dos anos, sendo observadas 69 espécies de peixes nos trabalhos de Bennemann *et al.* (1995), enquanto abordagens mais recentes, ao longo de seus afluentes e subafluentes, revelaram a ocorrência de 110 (SHIBATTA *et al.*, 2002) a 153 espécies (PELICICE *et al.*, 2005, RAIO & BENNEMAN, 2010).

Para Pelicice *et al.* (2005), apesar deste elevado valor de riqueza regional de espécies citado acima, assembleias locais tendem a apresentar valores consideravelmente mais baixos, oscilando entre 3 a 39 espécies, sendo esta uma tendência observada em várias partes do mundo (MATTHEWS, 1998). Sendo assim, a composição de 25 espécies (Tabela 2, Tabela 3 e Tabela 4) no presente estudo, para um trecho local da região média do rio Tibagi, parece se enquadrar dentro do padrão descrito por Matthews, (1998) e Pelicice *et al.* (2005).

Tabela 2. Relação das espécies de peixes e suas respectivas frequências em número, nas áreas a montante e a jusante da PCH Presidente Vargas, durante as campanhas de dezembro de 2015 (D), março (M), junho (J), setembro (S) e dezembro (D) de 2016.

TAXA			Ponto 1		4626			Ponto 2		90 (1.	Ponto 3					Ponto 4					
	D/15	M/16	J/16	S/16	D/16	D/15	M/16	J/16	S/16	D/16	D/15	M/16	J/16	S/16	D/16	D/15	M/16	J/16	S/16	D/16	
Ordem Characiformes																					
Família Parodontidae																					
Apareiodon piracicabae																				1	
Família Erythrinidae																					
Hoplias malabaricus			1		1											1					
Família Anostomidae																					
Leporinus elongatus		1	1									1									
Leporinus friderici			1									1				2					
Leporinus obtusidens	2					1					4					1					
Schizodon nasutus			6					1												1	
Família Characidae																					
Astyanax altiparanae	49	120	1	10	1	73	26	8	7	2	49	28		6	1	282	22	25	2		
Astyanax bockmanni	39	10	5	12		23	5	3	13		16	8		13		66	5	49	9		
Astyanax fasciatus	20	126	33	97	28	33	42	142	36	11	31	44		47	2	55	22	114	38		
Astyanax paranae	9	6				16	1				16	2				29	4				
Brycon nattereri																	1				
Galeocharax knerii	12	1	6			5	5	16		1	1				2	4		6			
Oligosarcus paranensis	3	5			1	5	4		2		1	2		1		2	1	1			
Ordem Siluriformes																					
Família Heptapteridae																					
Rhamdia quelen						2										1					
Família Pimelodidae																					
Iheringichthys labrosus		3					4				2	11				24					

TAXA	Ponto 1					Ponto 2					Ponto 3					Ponto 4				
	D/15	M/16	J/16	S/16	D/16	D/15	M/16	J/16	S/16	D/16	D/15	M/16	J/16	S/16	D/16	D/15	M/16	J/16	S/16	D/16
Pimelodus maculatus	1		1	2			1				4	4			1	2		1		
Pimelodus microstoma																2				
Família Loricariidae																				
Hypostomus albopunctatus										1										
Hypostomus nigromaculatus			1				1			1		4			1					3
Hypostomus sp.																		1		
Loricaria prolixa																				1
Ordem Gymnotiformes																				
Família Sternopygidae																				
Eigenmannia virescens											1									
Ordem Perciformes																				
Família Cichlidae																				
Geophagus brasiliensis							1									1				1
Número de Indivíduos	135	272	56	121	31	158	90	170	58	16	125	105	0	67	7	472	55	197	49	7
Total de Espécies	8	8	10	4	4	8	10	5	4	5	10	10	0	4	5	14	6	7	3	5
Riqueza	1,42	1,25	2,23	0,62	0,87	1,38	2	0,78	0,73	1,44	1,86	1,93	-	0,71	2,05	2,11	1,25	1,13	0,51	2,05
Diversidade	1,59	1,08	1,44	0,68	0,42	1,5	1,51	0,62	1	1,03	1,64	1,64	-	0,84	1,54	1,34	1,29	1,11	0,64	1,47
Equitabilidade	0,76	0,52	0,62	0,49	0,3	0,72	0,65	0,38	0,72	0,64	0,71	0,71	-	0,61	0,96	0,5	0,72	0,57	0,58	0,91

Tabela 3 Relação das espécies de peixes e suas respectivas frequências em número, nas áreas a montante e a jusante da PCH Presidente Vargas, durante as campanhas de fevereiro (F), abril (A), julho (J) e outubro (O) de 2017; janeiro (J), abril (A), agosto (A) e outubro (O) de 2018.

campanhas de fevere	:110 (г), a	וווע (A), J	ullio	(1)	· oull	טוטג	(0) (ie Zu	1/,), aD	111 (<i>P</i>	i), ay	0510	(A)	e out	.ubio	(0)	ue z	010.									
TAXA				Por	ito 1							Pon	to 2							Pon	ito 3							Pon	to 4			
	F/17	A/17	J/17	0/17	J/18	A/18	A/18	0/18	F/17	A/17	J/17	0/17	J/18	A/18	A/18	0/18	F/17	A/17	J/17	0/17	J/18	A/18	A/18	0/18	F/17	A/17	J/17	0/17	J/18	A/18	A/18	0/18
Ordem Characiformes																																
Família Parodontidae																																
Apareiodon piracicabae																				1												
Família Erythrinidae																																
Hoplias malabaricus																											<u> </u>			igsquare		
Família Anostomidae																																
Leporinus elongatus													1							1				1			<u> </u>		1	ldot		
Leporinus friderici													1												1		<u> </u>					
Leporinus obtusidens								1														2					↓		1	ш		
Schizodon nasutus					1		2						7							1	1			1			<u> </u>		2	igsquare		
Família Characidae																																
Astyanax altiparanae	16			11	13	10	8	9	15		3	6	8	11	6	7	20			22	10	14	3	7	26		<u> </u>	26	14	10	14	15
Astyanax bockmanni	1						2					4			4	1								1			<u> </u>	1		igsquare	3	4
Astyanax fasciatus	6		3	3	5	3	42	20	3		12	6		1	31	18	4			4	7	4	12	12	6		<u> </u>	7	6	igsquare	17	14
Astyanax paranae				1																6	1											
Brycon nattereri																											<u> </u>			ldot		
Galeocharax knerii	4			6	16	6	6	13	12			4	10	12	5	10	4			2	10	9	1	12	12		<u> </u>		16	6		8
Oligosarcus paranensis	3					1					6	1									2						<u> </u>		5	igsquare	1	
Família Salmininae																																
Salminus hilarii						1								1													<u> </u>			1		
Ordem Siluriformes																																
Família Heptapteridae																																
Rhamdia quelen			1																								<u> </u>			igsquare		
Família Pimelodidae																																
Iheringichthys labrosus																											<u> </u>			ldot		
Pimelodus maculatus																											<u> </u>					
Pimelodus microstoma													1														<u> </u>			igsquare		
Família Loricariidae																																
Hypostomus albopunctatus				2									2							1					1		<u> </u>	1			1	
Hypostomus																																ı
nigromaculatus			3	4							1	3	1														↓			1		
Hypostomus sp.																											↓			igwdot		
Loricaria prolixa																														igsquare		
Ordem Gymnotiformes																																
Família Sternopygidae																																
Eigenmannia virescens																											_			igwdown		
Ordem Perciformes																																
Família Cichlidae																																
Geophagus brasiliensis			ļ		<u> </u>	1						ļ				 					ļ				<u> </u>		—			igspace		
Número de Indivíduos	30	0	7	27	35	22	60	43	30	0	22	24	31	25	46	36	28	0	0	38	31	29	16	34	46	0	0	35	45	18	36	41
Total de Espécies	5	0	3	6	4	6	5	4	3	0	4	6	8	4	4	4	3	0	0	8	6	4	3	6	5	0	0	4	7	4	5	4
Riqueza	1,17	-	1,02	1,51	0,84	1,61	0,97	0,79	0,58	-	0,97	1,57	2,03		0,78	0,83	0,60	-	-	1,92	1,45	0,89	0,72	1,41	1,04	-	 	0,84	1,57	1,03	1,11	0,80
Diversidade	1,26	-	1,00	1,54	1,10	1,40	0,97	1,13	0,94	-	1,09	1,68	1,67	0,97	0,98	1,12	0,79	-	-	1,38	1,46	1,17	0,70	1,37	1,10	-	-	0,74	1,55	1,01	1,12	1,28
Equitabilidade	0,78	-	0,91	0,86	0,79	0,78	0,60	0,81	0,85	-	0,79	0,93	0,80	0,70	0,71	0,80	0,72	-	-	0,66	0,81	0,84	0,63	0,76	0,68	-	-	0,53	0,79	0,73	0,70	0,92

Tabela 4 Relação das espécies de peixes e suas respectivas frequências em número, nas áreas a montante e a jusante da PCH Presidente Vargas, durante as

campanhas de janeiro (J), abril (A), julho (J) e setembro (S) de 2019; fevereiro (F), maio (M), agosto (A) e novembro (N) de 2020.

=			7 3 -	Pont									nto 2	,	- (-	,, -					nto 3							Ponto 4				
TAXA	J/19	A/19	J/19	S/19		M/20	A/20	N/20	J/19	A/19	J/19			M/20	A/20	N/20	J/19	A/19	J/19			M/20	A/20	N/20	J/19	A/19	J/19			M/20	A/20	N/20
Ordem Characiformes																																
Família Parodontidae																																
Apareiodon piracicabae													1							1							1	1	2			1
Família Erythrinidae																																
Hoplias malabaricus													1																			
Família Anostomidae																																
Leporinus elongatus																																1
Leporinus friderici												1														1						
Leporinus obtusidens	1																															
Schizodon nasutus			1			2		1	2		1		1	3			1					6		2		1				6		1
Família Characidae								_					_													_						
Astyanax altiparanae	8	1	5	2	6	20	18	19	10	1	6	9	4	17	23	11	4		8	3	4	9	9	11	8	1	1	12	12	17	18	11
Astyanax bockmanni				1					1		2								3								3		1			
Astyanax fasciatus	2	1	21	23	1	23	9	15	2		19	20	3	8	11	7	5		15	12	1	9	6	9	1		38	13	21	10	9	15
Astyanax paranae						2							Ĺ		1							1					"					
Brycon nattereri																																
Galeocharax knerii	9	1	1	7	11	15	1	11	7	2	1	4	9	10	3	20	4	2		2	12	4	3	9	9			2		5	1	7
Oligosarcus paranensis		_	1		2	1	3				1	<u> </u>	1	10			<u> </u>				3	2	2							3	2	
Acestrorhynchus lacustris																											1				_	
Família Salmininae																																
Salminus hilarii																																
Ordem Siluriformes																																
Família Heptapteridae																																
Rhamdia quelen				1						1		1															1					
Família Pimelodidae																																
Iheringichthys labrosus											1																					
Pimelodus maculatus		2																1						1			2					
Pimelodus microstoma																								_								
Família Loricariidae																																
Hypostomus albopunctatus					1									1															1			1
Hypostomus nigromaculatus			1		2							1	3													1						i
Hypostomus sp.						İ																										i
Loricaria prolixa																																
Ordem Gymnotiformes																																
Família Sternopygidae																																
Eigenmannia virescens																																
Ordem Perciformes																																
Família Cichlidae																																
Geophagus brasiliensis		1																														
Número de Indivíduos	20	6	30	34	23	63	31	46	22	4	31	36	23	39	37	38	14	3	26	18	20	31	20	32	18	4	47	28	37	41	30	35
Total de Espécies	4	5	6	5	6	6	4	4	5	3	7	6	8	5	3	3	4	2	3	4	4	6	4	5	3	4	7	4	5	5	4	5
Riqueza	1,01	2,23	1,47		1,60					1,44	1,74		2,23	1,09	0,55				0,61				1,00	1,15			1,55		1,10	1,08	0,88	1,12
Diversidade	1,06	1,56	1,00	0,96	1,40					1,04		1,21	1,75	1,32	0,85			0,63			1,06			1,32					1,04	1,44	0.96	1,25
Equitabilidade	0.79					0,76								0,82								0,88									0.69	0.77

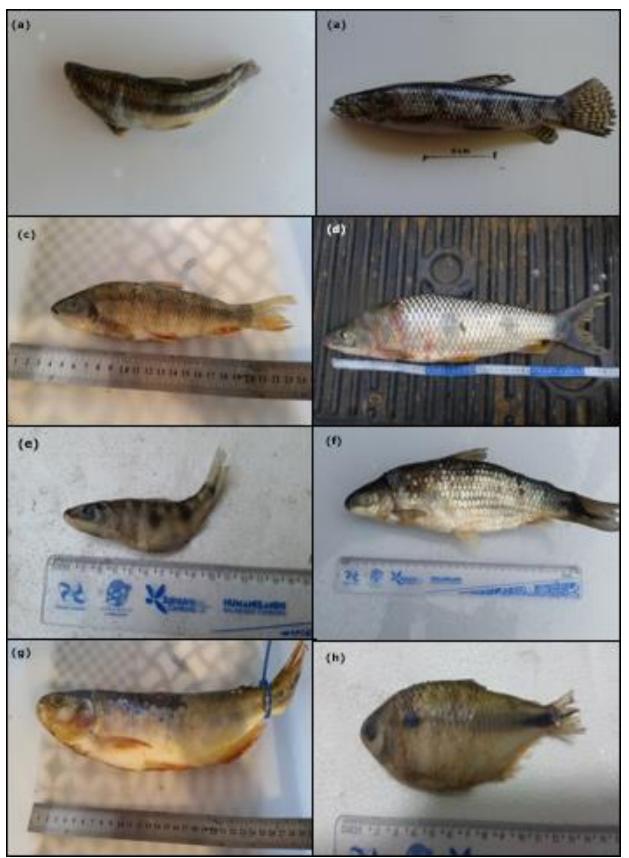


Figura 8. Registro fotográfico dos exemplares capturados: (a) Apareiodon piracicabae; (b) Hoplias malabaricus; (c) Leporinus elongatus; (d) Leporinus friderici; (e) Leporinus obtusidens; (f) Schizodon nasutus; (g) Brycon nattereri; (h) Astyanax altiparanae.

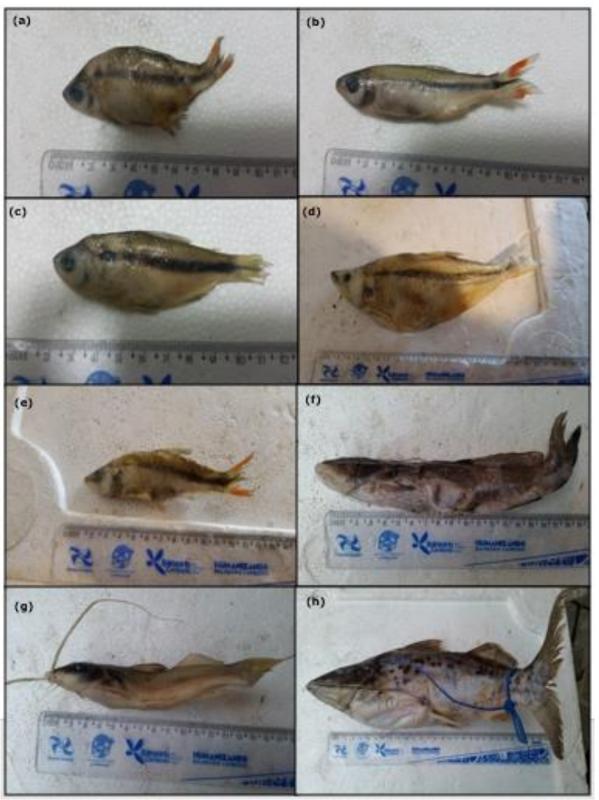


Figura 9. Registro fotográfico dos exemplares capturados: (a) Astyanax bockmanni; (b) Astyanax fasciatus; (c) Astyanax paranae; (d) Galeocharax knerii; (e) Oligosarcus paranensis; (f) Rhamdia quelen; (g) Iheringichthys labrosus e (h) Pimelodus maculatus.

Figura 10. Registro fotográfico dos exemplares capturados: (a) *Pimelodus microstoma*; (b) *Hypostomus albopunctatus*; (c) *Hypostomus nigromaculatus*; (d) *Hypostomus sp*; (e) *Loricaria prolixa*; (f) *Eigenmannia virescens*, (g) *Geophagus brasiliensis* e (h) *Salminus hilarii*.

Figura 11. Registro fotográfico de exemplar capturado: (a) Acestrorhynchus lacustris.

As ordens Characiformes e Siluriformes foram dominantes em número de espécies e abundância de exemplares (Tabela 2, Tabela 3 e Tabela 4), o que está de acordo com o padrão descrito por Lowe-McConnell, (1999) para os sistemas de água-doce neotropicais. Esta tendência também tem sido observada nos trabalhos realizados na bacia do rio Tibagi por Bennemann *et al.* (1995 e 2000), Shibatta *et al.* (2002 e 2007), Hoffman *et al.* (2005), Pelicice *et al.* (2005), Sant'Anna *et al.* (2006) e Langeani *et al.* (2007).

A família Characidae foi responsável por 94,22% da abundância dos peixes coletados, nas 21 coletas/campanhas realizadas, seguida por Anostomidae (2,02%), Pimelodidae com 1,81%, e Loricariidae (1,20%) (Tabela 2, Tabela 3, Tabela 4 e Figura 12). As demais famílias representaram em conjunto, apenas 0,74% dos peixes amostrados (Tabela 2, Tabela 3, Tabela 4 e Figura 12).

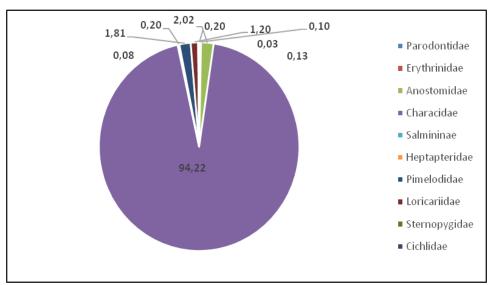


Figura 12. Contribuição percentual em número de indivíduos para as principais famílias de peixes, capturadas nas áreas a montante e a jusante da PCH Presidente Vargas, nas 21 campanhas realizadas.

Segundo Ferreira *et al.* (1993) a ordem Characiformes compreende a grande maioria de peixes de água doce do Brasil, com mais de 950 espécies descritas para a região Neotropical. A elevada participação da família Characidae é decorrente da ampla distribuição de suas espécies em água doce, além desta família incluir a maioria das espécies de peixes de águas interiores do Brasil (BRITSKI, 1972).

A predominância de Characidae no presente estudo esteve fundamentada na elevada contribuição das espécies *Astyanax fasciatus* (Cuvier, 1819) (Figura 9b) e *Astyanax altiparanae* Garutti & Britski, (2000) (Figura 8h), que em conjunto contribuíram com 71,56% de todos os peixes capturados (Figura 13). Tal dominância numérica muito provavelmente está relacionada com a grande capacidade adaptativa das espécies deste gênero, devido à flexibilidade de hábitos alimentares e a capacidade de reprodução em diversos hábitats, permitindo sua ampla distribuição e abundância ao longo da bacia do rio Tibagi (BENNEMANN *et al.* 2000, 2002 e 2005, ORSI *et al.*, 2004 e HOFFMAN *et al.*, 2005).

Além de *A. fasciatus* e *A. altiparanae* foi observada simpatria com outras duas espécies do gênero, com *Astyanax bockmanni* (Vari & Castro, 2007) (Figura 9a) contribuindo com 7,87% da abundância e *Astyanax paranae* (Eigenmann, 1914) (Figura 9c) com 2,40% (Figura 13). A saicanga, *Galeocharax knerii* (Steindachner, 1879) (Figura 9d) foi a terceira espécie em abundância representando 10,61% dos peixes capturados, seguido de *Oligosarcus paranensis* Menezes & Géry, 1983 (Figura 9e) (1,74%) e *Iheringichthys labrosus* (Kröyer, 1874) (Figura 9g) com 1,15% (Figura 13). As demais espécies em conjunto contribuíram com apenas 4,68% do total amostrado, o que está de acordo com

os trabalhos realizados na bacia do rio Tibagi, onde apesar do grande número de espécies observadas regionalmente (151 ou 153, como citado no trabalho de Pelicice *et al.*, 2005), poucas se sobressaem em número de indivíduos (SHIBATTA *et al.*, 2002 e 2007, HOFFMAN *et al.*, 2005, PELICICE *et al.*, 2005 e LANGEANI *et al.*, 2007).

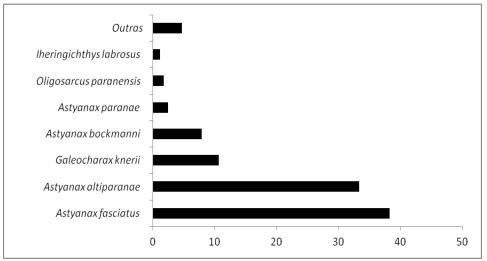


Figura 13. Contribuição percentual em número de indivíduos para as principais espécies de peixes, capturadas nas áreas a montante e a jusante da PCH Presidente Vargas, durante o período de estudo.

Em afluentes e subafluentes das regiões média e inferior da bacia do rio Tibagi, Shibatta et al. (2002) destacaram a presença de quatro espécies de Astyanax: A. altiparanae, A. eigenmanniorum (Cope, 1894) (recentemente reclassificada como A. bockmanni), A. fasciatus e A. scabripinnis (Jenyns, 1842), esta última muito provavelmente pertencente ao complexo A. paranae. Espécies estas, presentes em simpatria no presente estudo/monitoramento, com participações distintas ao longo das áreas amostradas, demonstrando as diferentes formas de ocupação ao longo do gradiente amostral, muito provavelmente em função das estratégias alimentares e utilização do espaço (presença de abrigos/diversidade de habitats entre os locais comparados) (BENNEMANN et al., 2000, 2002 e 2005, ORSI et al., 2004 e HOFFMAN et al., 2005).

É importante destacar que nas áreas de maior velocidade de corrente, como nos pontos 1 e 3 (Tabela 1 e Figura 3), houve uma pequena dominância de *A. altiparanae* sobre as demais espécies deste gênero (dez/15), alternando suas participações na comunidade com *A. fasciatus*, especialmente nas coletas de junho e setembro de 2016, em que o rio apresentava elevada vazão de água Tabela 2, Tabela 3 e Tabela 4). Por outro lado, no ponto 4 (característica de rio semi-lótico) este domínio (dez/15) foi mais acentuado, o que segundo Orsi *et al.* (2004) e Bennemann *et al.* (2002 e 2005), está de acordo com a biologia da espécie, que apesar de sua ampla distribuição e capacidade adaptativa

destacada acima, tem preferência por águas mais calmas, nas margens dos rios da bacia do Tibagi.

Ainda neste sentido, o de distribuição diferenciada das espécies ao longo dos pontos amostrais, Araújo-Lima, (1995) definem ambientes distintos nos corpos aquáticos, identificando proporções diferenciadas entre espécies de Characiformes e Siluriformes que mudam marcadamente sua proporção em relação ao hábitat. Em geral, nos ambientes próximos às margens é observada uma maior participação das espécies de Characiformes, enquanto os Siluriformes e Gymnotiformes são mais abundantes nos canais de rios e no fundo (BENNEMANN et al., 2000 e 2002). Tal configuração pôde ser observada claramente ao longo dos pontos amostrais, onde nos pontos 1 e 2 (onde as coletas foram realizadas nas margens do rio), houve um predomínio dos Characiformes e pequena participação dos Siluriformes, enquanto que no ponto 3 onde a amostragem foi mais no canal do rio já foram observadas mais espécies de Siluriformes, além da presença exclusiva do Gymnotiforme Eigenmannia virescens (Valenciennes, 1847) (Tabela 2, Tabela 3 e Tabela 4).

No ponto 4, caracterizado por apresentar águas mais tranquilas (rio semi-lótico) apesar da dominância dos Characiformes, foi observada uma maior participação dos Siluriformes se comparado com as demais áreas. Isto indica que, provavelmente estas espécies apresentem preferência por águas mais calmas no fundo dos rios, uma vez que foram capturados no fundo do canal por tarrafas e covos e na parte inferior das redes (Tabela 5).

Por outro lado, os Characidae foram mais abundantes nas margens do canal, na porção superficial da coluna d'água. Tais configurações estão de acordo com o apresentado por Bennemann *et al.* (2000 e 2002), demonstrando as interações interespecíficas de coexistência entre as espécies, ou seja, para não competirem entre si apresentam diferentes formas de alimentação e utilização do espaço ao longo do gradiente amostral.

As maiores abundâncias de exemplares foram também observadas no ponto 4, assim como, as maiores riquezas de espécies, sendo observadas 24 das 25 espécies coletadas no presente estudo, com quatro exclusivas deste ambiente, como a pirapitinga *Brycon nattereri* Günther, 1864 (Figura 8g), a bocarra *Acestrorhynchus lacustris* (Lütken, 1875) (Figura 11a), o cascudo *Hypostomus sp.* (Figura 10d) e o cascudo-chinelo *Loricaria prolixa* Isbrücker & Nijssen, 1978 (Figura 10e) (Tabela 2, Tabela 3, Tabela 4, e Figura 14).

Contudo como comentado anteriormente, apesar desta maior diversidade, o elevado predomínio de *A. altiparanae* (dez/15) e de *A. fasciatus* (jun/16), sobre as demais espécies nesta porção do rio, acabou reduzindo a equitabilidade deste local, especialmente para as coletas de dezembro de 2015 (Tabela 2, Tabela 3 e Tabela 4).

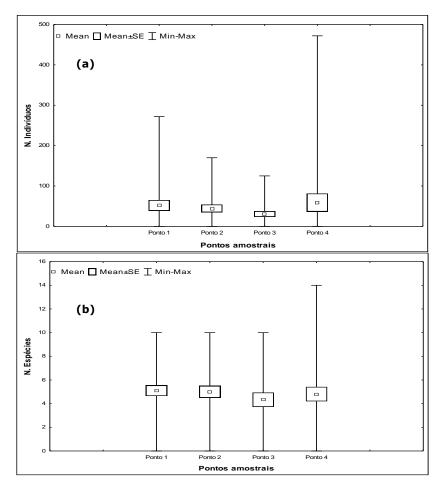


Figura 14. Variação média do número de indivíduos (a) e riqueza de espécies de peixes (b), nos pontos amostrais a montante (#3 e #4) e a jusante (#1 e #2) da PCH Presidente Vargas, nas 21 campanhas realizadas. O retângulo dentral indica a média e a caixa representa a variação do erro padrão em torno da média.

Comparativamente, as amostragens de dezembro de 2015, março, junho, setembro, dezembro de 2016, fevereiro, abril, julho, outubro de 2017, janeiro, abril, agosto e outubro de 2018, janeiro, abril, julho, setembro de 2019, fevereiro, maio, agosto e novembro de 2020 revelaram mudanças na composição da comunidade de peixes, ao longo dos pontos amostrais de influência da PCH Presidente Vargas, com o incremento de três novas espécies em março de 2016: *Leporinus elongatus* (Valenciennes, 1849) (Figura 8c), *Brycon nattereri* (Günther, 1864) (Figura 8g) e *Hypostomus nigromaculatus* (Schubart, 1964) (Figura 10c) e duas em junho de 2016: *Schizodon nasutus* (Kner, 1859) (Figura 8f) e *Hypostomus sp.* (Figura 10d) (Tabela 2). Ao passo que em setembro de 2016

não foi verificada a ocorrência de novos táxons, com apenas cinco espécies registradas nas amostragens. Contudo, como mencionado na metodologia, no mês de setembro, devido à abertura das barragens e o carreamento das redes dos pontos de coleta, foi efetuado um esforço de um dia a menos de coleta (21/09), que possivelmente tenha influenciado na riqueza e abundância de peixes.

Em dezembro de 2016, embora tenha sido capturado o menor número de peixes entre os meses de amostragem (em virtude do baixo nível dos rios e consequentemente, deslocamento para outras regiões), foram observadas três novas espécies, sendo estas o canivete *Apareiodon piracicabae* (Figura 8a), o cascudo *Hypostomus albopunctatus* (Regan, 1908) (Figura 10b) e o cascudo-chinelo *Loricaria prolixa* (Figura 10e). Tais resultados demonstram a complexidade dos ecossistemas amostrados e a necessidade da continuidade dos estudos de monitoramento, perante o constante o aparecimento de novas espécies.

As espécies dominantes mantiveram-se praticamente as mesmas, com alterações nas participações de cada uma entre as coletas, com destaque para *Astyanax fasciatus*, que contribuiu com as maiores capturas para o mês de março e principalmente em junho e setembro de 2016 (Tabela 2, Tabela 3 e Figura 15), além da pequena participação dos Siluriformes na terceira e quarta coletas. Tais padrões obtidos, muito provavelmente estão relacionados com a própria biologia das espécies capturadas e seus movimentos ao longo dos gradientes espaciais e sazonais na área de estudo. Especialmente pela variação das condições hidrológicas, onde a elevada vazão da água em junho de 2016 pode ter resultado na diminuição da representatividade dos Siluriformes, bem como, na alternância das populações de *A. altiparanae* e *A. fasciatus*.

Por outro lado, na quinta coleta (dez/2016), em virtude do baixo nível dos rios, houve uma maior participação dos Siluriformes, especialmente da família Loricaridae, representada pelos cascudos, e uma pequena abundância dos Characidae (gênero Astyanax) em comparação as demais amostragens. De um modo geral, os *Astyanax* apresentam baixa tolerância a estas condições ambientais e muito provavelmente tenham se deslocado para áreas mais profundas, o que explica, por exemplo, a ausência destes organismos no ponto 4, que em dezembro de 2015, quando o rio apresentava um maior nível de água, foram as espécies dominantes nas amostragens.

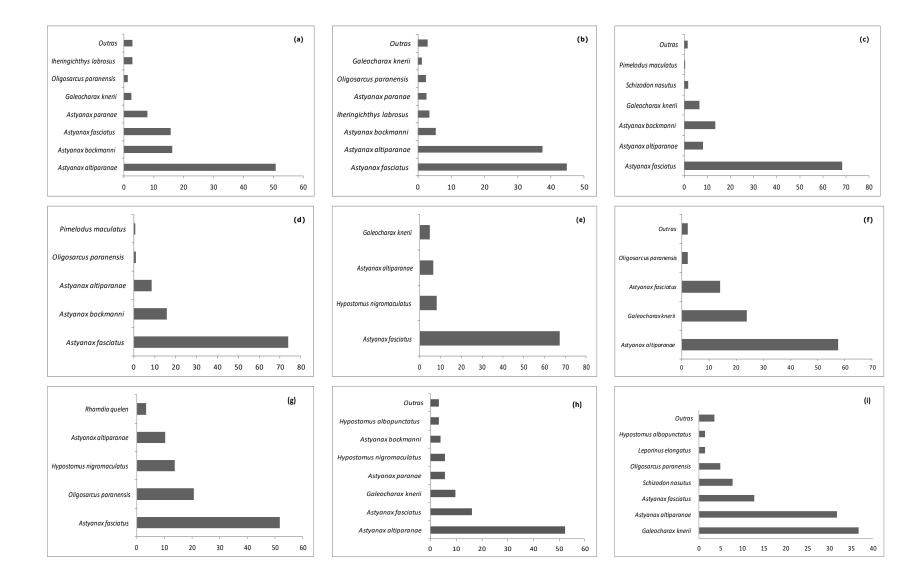
Nas amostragens de fevereiro de 2017, novamente ocorreram mudanças na assembléia de peixes da PCH Presidente Vargas, com *A. altiparanae* voltando a contribuir com as maiores

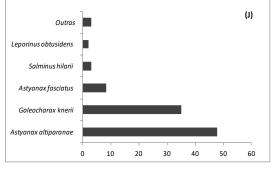
abundâncias, a exemplo do observado em dezembro de 2015 (Figura 15). Contudo, para este mês de amostragem, em que o rio apresentava-se novamente com baixo volume de água, houve uma elevada participação das espécies carnívoras, com a Saicanga, *Galeocharax knerii* ocupando a segunda posição em abundância, com 23,88% do total de peixes capturados e *Oligosarcus paranensis* contribuindo com a quarta colocação entre os peixes mais abundantes (Figura 15). Tais resultados corroboram a importância da vazão do rio na estruturação da comunidade de peixes locais, em conjunto com as relações de interação entre as espécies, neste exemplo, muito provavelmente vinculadas à alimentação/predação exercida pelas carnívoras.

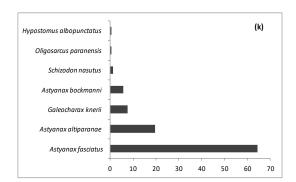
Em abril de 2017, não foram capturados exemplares em virtude das atividades de manutenção da PCH Presidente Vargas, que deixaram o canal de fuga completamente sem água, ao passo que nas campanhas de julho de 2017, com o retorno do nível de água aos canais (meses anteriores), foi observado um repovoamento da ictiofauna da PCH, com *A. fasciatus* contribuindo com as maiores abundâncias registradas (Figura 15). Também é interessente ressaltar a elevada contribuição das espécies carnívoras, como *Oligosarcus* paranensis, a exemplo do observado em fevereiro deste ano.

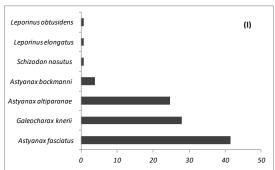
Em outubro de 2017, o monitoramento do processo sucessional, pós-impacto das manutenções de abril, demonstra uma tendência de retorno da comunidade íctica às composições específicas observadas no início das coletas, com *A. altiparanae* novamente se caracterizando como espécie chave, sobressaindo em abundância sobre as demais espécies (Figura 15). Contudo, destaca-se que ainda foi capturado um menor número de indivíduos e espécies em relação a dezembro de 2015, bem como, é importante mencionar a elevada contribuição de cascudos do gênero Hypostomus. Tais padrões estão de acordo com o esperado dentro do processo de sucessão ecológica, com pequenas readequações da comunidade perante o cenário atual.

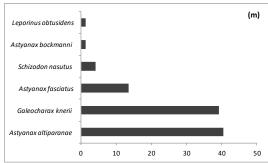
Em janeiro de 2018 novamente observou-se uma elevada contribuição das espécies carnívoras, seguindo o padrão verificado no ínicio do repovoamento região (Tabela 2, Tabela 3, e Figura 15). Para este mês de amostragem, a saicanga *Galeocharax knerii* foi a espécie mais representativa em número de exemplares, inclusive superando *A. altiparanae* que ocupou a segunda posição em abundância, com 31,69% dos peixes capturados, seguida de *Astyanax fasciatus* (12,68%), *Schizodon nasutus* (7,75%), *Oligosarcus paranensis* (4,93%), *Leporinus elongatus* e *Hypostomus albopunctatus*, ambos com 1,41% do total capturado em número região (Tabela 2, Tabela 3 e Figura 15).

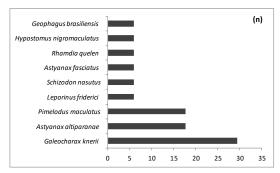

Na campanha de abril de 2018 foi observada a presença de uma nova espécie na assembléia de peixes da PCH Presidente Vargas, sendo esta a tabarana *Salminus hilarii* (Valenciennes, 1849), que por ser uma espécie migradora, encontra-se quase ameaçada de extinção (NT), no Estado do Paraná. *A. altiparanae* se manteve como dominante nas amostragens, seguida de *Galeocharax knerii e Astyanax fasciatus*, mantendo-se o padrão observado nas coletas anteriores região (Tabela 2, Tabela 3 e Figura 15).

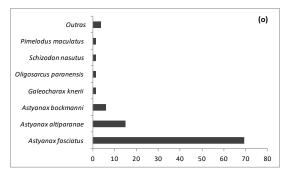

Para a amostragem de agosto de 2018, *Astyanax fasciatus* voltou a figurar como espécie dominante na assembleia de peixes da PCH, seguida por *A. altiparanae*, *G. knerii* e A. *bockmanni*, a exemplo do observado nos períodos iniciais de monitoramento, em que principalmente a vazão natural do rio determinava as mudanças na estrutura da comunidade de peixes (Tabela 2, Tabela 3 e Figura 15). Destaca-se que para este mês de coleta, o nível do reservatório encontrava-se baixo, devido ao pequeno volume de chuvas para a estação do ano. Dentre os exemplares de *Astyanax fasciatus* amostrados neste período, 26 (cerca 25% do total amostrado para a espécie) apresentavam gônadas maturas, especialmente nos pontos amostrais 1, 2 e 4, corroborando a hipótese levantada de que o ponto 3 realmente parece não constituir um ambiente adequado a reprodução da espécie.

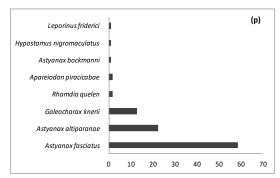

Na campanha, realizada em outubro de 2018, *Astyanax fasciatus* manteve-se como dominante, (ainda com uma grande quantidade de exemplares com gônadas maturas), com a saicanga *G. knerii* ocupando a segunda posição em abundância, seguida de A. *bockmanni, Schizodon nasutus, Leporinus elongatus e Leporinus obtusidens* (Tabela 2, Tabela 3 e Figura 15). Em de janeiro de 2019, *A. altiparanae* novamente figurou como a espécie dominante nas amostragens, seguido da carnívora *Galeocharax knerii* e de *Astyanax fasciatus*, a exemplo do observado em períodos anteriores, fortalecendo a presença de padrões determinados principalmente pelo regime hídrico da região (Tabela 2, Tabela 3, Tabela 4 e Figura 15).

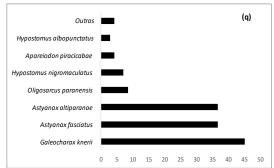

Em abril de 2019 foi capturado um pequeno número de exemplares nas amostragens (17 indivíduos), muito provavelmente associado à baixa vazão do rio, onde predominaram as saicangas *Galeocharax knerii*, seguido *Astyanax altiparanae* e *Pimelodus maculatus*. Nas coletas de julho e setembro de 2019, *Astyanax fasciatus*, voltaram a ser dominantes ao longo da PCH Presidente Vargas, seguidas de *Astyanax altiparanae* e *G. knerii*. Destaca-se na 16ª amostragem a presença de uma espécie que ainda não havia sido amostrada nos anos anteriores, sendo esta a bocarra *Acestrorhynchus lacustris* (Lütken, 1875) (Tabela 2, Tabela 3, Tabela 4 e Figura 15).

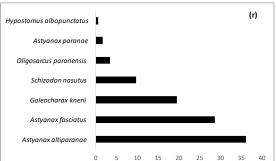

Em fevereiro de 2020, a saicanga, *G. knerii* foi predominante nas amostragens, seguida por *A. fasciatus e A. altiparanae* (Tabela 2, Tabela 3, Tabela 4 e Figura 15). Ao passo que em maio, agosto e novembro de 2020, *A. altiparanae*, seguida de *A. fasciatus* mais uma vez representaram as maiores abundâncias da comunidade de peixes da PCH Presidente Vargas (Tabela 2, Tabela 3, Tabela 4 e Figura 15). Na amostragem de agosto de 2020, a exemplo do observado para o mesmo período de 2018, cerca de 25% dos exemplares de *Astyanax altiparanae e Astyanax fasciatus* encontravam-se com gônadas maturas, padrão que também foi observado em novembro deste ano, inclusive para *G. knerii*.

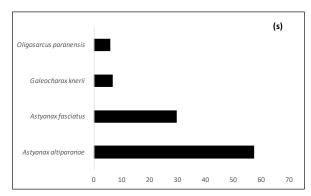












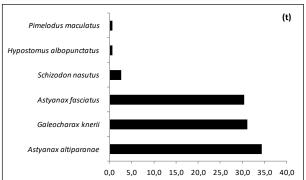


Figura 15. Contribuição percentual em número de indivíduos para as principais espécies de peixes, capturadas nas áreas a montante e a jusante da PCH Presidente Vargas, nas amostragens de dezembro de 2015 (a), março (b), junho (c) setembro (d) e dezembro (e) de 2016; fevereiro (f), julho (g) e outubro de 2017 (h); janeiro (i), abril (j), agosto (k) e outubro (l) de 2018; janeiro (m), abril (n), julho (o) e setembro (p) de 2019; fevereiro (q), maio (r), agosto (s) e novembro (t) de 2020.

Quanto ao número de organismos capturados, bem como, em relação à riqueza e a diversidade, as amostragens de dezembro de 2015 apresentaram valores médios superiores as demais, muito provavelmente relacionados à vazão do rio Tibagi (Figura 16).

Nas coletas de março de 2016, os pontos de amostragem encontravam-se com um nível de água significativamente mais baixo que o observado em dezembro de 2015, o que pode ter ocasionado na movimentação dos peixes para locais com maior vazão. A baixa representatividade de indivíduos no ponto 4 (mar/2016) corrobora esta hipótese, uma vez que este foi o ponto com menor número de indivíduos coletados, e que em dezembro de 2015 apresentava as maiores abundâncias de organismos, por apresentar águas mais calmas e rodeadas por vegetação ciliar bem preservada (Tabela 2, Tabela 3 e Figura 16).

Por outro lado, os rendimentos ainda mais baixos obtidos em junho e setembro de 2016 podem estar vinculados a uma elevada vazão nesta porção média do rio Tibagi, resultante da abertura de comportas das barragens que drenam para esta localidade, provocando um deslocamento das populações de peixes ainda mais acentuado que o observado em março deste ano, resultando em mudanças na composição e estrutura da comunidade, com redução na abundância, na riqueza e na diversidade de peixes (Tabela 2,Tabela 3 e Figura 16). Tais resultados corroboram a importância das condições hidrológicas locais (vazão do rio) na estruturação da comunidade de peixes da Pequena Central Hidrelétrica PCH Presidente Vargas. Além disto, é de comum consenso que amostragens nos meses de primavera (dez/15) e verão (mar/16), geralmente apresentem maiores abundâncias de organismos, associados com maior temperatura da água, maior disponibilidade de alimento, bem como, a ocorrência de eventos reprodutivos e de recrutamento.

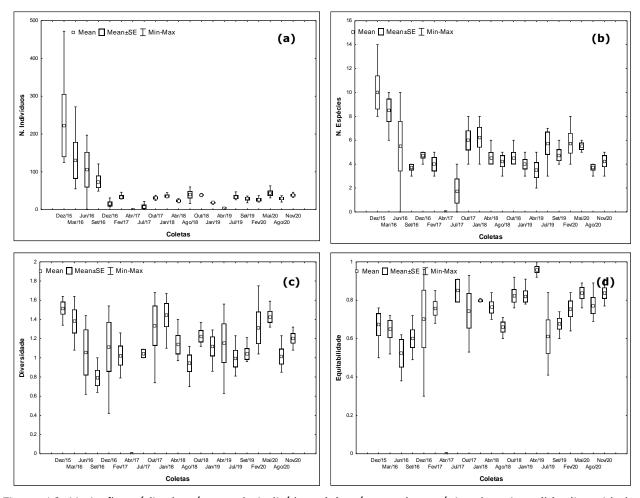


Figura 16. Variação média do número de indivíduos (a), número de espécies de peixes (b), diversidade (c) e equitabilidade (d), nas áreas a montante e a jusante da PCH Presidente Vargas, nas 21 campanhas realizadas. O retângulo dentral indica a média e a caixa representa a variação do erro padrão em torno da média.

Na sexta campanha amostral (fev/2017), embora a captura em número de indivíduos, tenha se apresentado baixa, se comparada ao mesmo período de 2016 (mar/2016), observa-se um incremento na abundância de peixes, bem como, nos índices de diversidade e equitabilidade aos apresentados no final do ano de 2016 (dez/2016), em que o rio apresentava-se com as menores profundidades observadas durante o presente monitoramento. Tal configuração muito provavelmente tenha resultado em um grande deslocamento de peixes para áreas adjacentes e um possível retorno (com modificações na estrutura e composição da comunidade, citadas anteriormente) em fevereiro de 2017.

Como comentado anteriormente, na sétima campanha amostral não foram capturados exemplares ao longo dos pontos amostrais, em virtude da atividade de manutenção da PCH Presidente Vargas, que deixou o canal de fuga completamente sem água. Durante este período de manutenção foi realizado o resgate das espécies de peixes ao longo do

canal de fuga, bem como, no reservatório da PCH. Etapa esta que foi desenvolvida pela equipe de resgate de fauna da Usina Mauá.

Com o término da manutenção da PCH e retorno dos níveis de água do reservatório e canal de fuga, nos meses seguintes, foi observado um repovoamento da ictiofauna (campanha oito), entretanto, as abundâncias, bem como, o número de espécies, riqueza e diversidade foram significativamente mais baixos se comparado com os períodos iniciais de monitoramento (dezembro de 2015 a setembro de 2016), o que de certo modo era esperado, perante o "impacto" sofrido pela comunidade. Contudo há de se destacar que nos pontos amostrais 3 e especialmente no ponto 4 (comumente caracterizado por apresentar elevados rendimentos em captura e número de espécies), as redes de espera foram furtadas em dois dos três dias de amostragem, o que muito provavelmente tenha contribuído para este baixo rendimento.

Em outubro de 2017, como comentado anteriormente quando abordado a composição de espécies, verifica-se uma tendência de recuperação da comunidade de peixes da PCH, especialmente para o número de indivíduos, a riqueza e a diversidade de espécies, os quais se manteviveram constantes para as amostragens de janeiro de 2018, seguido de leve diminuição em abril de 2018 e pequenos incrementos e oscilações em agosto e outubro de 2018 (Figura 16a e Figura 16b). De um modo geral, as maiores variações nestes períodos ocorreram para o índice de diversidade, muito possivelmente associado ao baixo volume das águas, onde um pequeno número de espécies se manteve ainda no ambiente. Destaca-se na 11ª coleta, a presença da tabarana *Salminus hilarii*, que até o presente momento ainda não havia sido registrada na localidade.

Em janeiro e principalmente em abril de 2019, em virtude da manutenção do baixo nível do rio foram observados pequenos rendimentos em número de exemplares capturados, com apenas 17 indivíduos coletados em abril de 2019. Contudo apesar desta baixa abundância e riqueza de espécies, as diversidades e equitabilidades apresentaram um aumento, pois não houve dominâncias significativas de uma espécie sobre as outras, ou seja, foram poucos os exemplares que ainda conseguiram se manter no ambiente com a pequena lâmina de água disponível para eles. Em julho de 2019, observou-se um aumento no número de indivíduos capturados, bem como, no número de espécies, com destaque para a presença da bocarra *Acestrorhynchus lacustris* (Lütken, 1875) (Figura 11a). As coletas de setembro de 2019, fevereiro e maio de 2020 mantiveram a tendência de julho, com pequenos incrementos nos índices de diversidade e equitabilidade da comunidade, ao passo em que as abundâncias de indivíduos mantiveram-se constantes.

A campanha de agosto de 2020 manteve o padrão de abundância das amostragens anteriores, entretanto o número de espécies, bem como os índices de diversidade e em menor grau, a equitabilidade, apresentaram uma pequena redução, muito provavelmente vinculadas as menores temperaturas desta época do ano, sendo capturadas apenas quatro espécies.

Em novembro de 2020, foram observados incrementos na abundância e diversidade de peixes, ao longo da PCH Presidente Vargas; o que de certo modo era esperado para esta época do ano, em que devido às maiores temperaturas, há uma tendência de aumento na captura de peixes. Destaca-se que a comunidade ictiofaunística vem apresentando uma estabilidade nos parâmetros populacionais analisados, com pequenas oscilações vinculadas aos regimes hidrológicos, bem como, relacionadas às próprias estações do ano. Entretanto, como comentado anteriormente, há de se ponderar que as elevadas capturas registradas no início do monitoramento, em dezembro de 2015 a março de 2016, não foram mais repetidas.

Na Tabela 5 estão descritas as capturas por petrecho amostral, onde para as 21 campanhas realizadas, pôde-se observar que de um modo geral, a rede de espera com malha de 3,0 cm entre nós opostos contribuiu com as maiores capturas em número de espécies e abundâncias de exemplares, ao passo que o kicknet e os covos resultaram nas menores capturas, sendo que no kicknet não foi capturado nenhum exemplar.

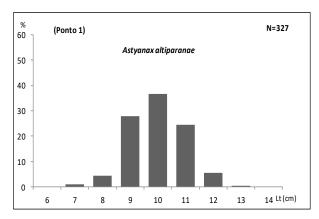
Contudo, apesar das menores contribuições dos outros métodos, foram capturados exemplares que não seriam selecionados pelas redes de malha 3,0 cm, como o mandi *Pimelodus microstoma* (Steindachner, 1877), amostrados com a tarrafa/malha 8,0cm e o cascudo-chinelo *Loricaria prolixa* (Isbrücker & Nijssen, 1978), com a malha de 8,0 cm (Tabela 5). Estes resultados demonstram a importância da diversificação dos métodos amostrais na caracterização da biodiversidade de peixes nas áreas a montante e a jusante da PCH Presidente Vargas.

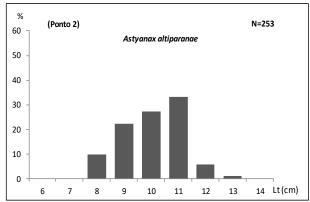
Tabela 5. Relação das espécies de peixes e suas respectivas frequências em número, por petrecho amostral, nas áreas a montante e a jusante da PCH Presidente Vargas, durante as 21 campanhas realizadas.

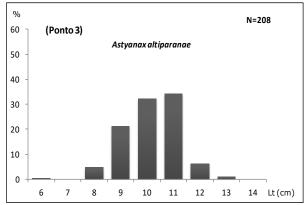
			10.1	Malha					
TAXA	Tarrafa	Covo	Kicknet	3,0cm	8,0cm	12,0cm			
Ordem Characiformes									
Família Parodontidae									
Apareiodon piracicabae				8					
Família Erythrinidae									
Hoplias malabaricus					3	1			
Família Anostomidae									
Leporinus elongatus				4	3				

Leporinus friderici				3	2	3
Leporinus obtusidens				13		
Schizodon nasutus				34	17	
Família Characidae						
Astyanax altiparanae	44	1		1255	4	
Astyanax bockmanni	13			295		
Astyanax fasciatus	47			1449		
Astyanax paranae				94		
Brycon nattereri					1	
Galeocharax knerii	1			319	95	
Oligosarcus paranensis	2			66		
Acestrorhynchus lacustris				1		
Família Salmininae						
Salminus hilarii				3		
Ordem Siluriformes						
Família Heptapteridae						
Rhamdia quelen		1		3	4	
Família Pimelodidae						
Iheringichthys labrosus	26			16	3	
Pimelodus maculatus	2			10	11	
Pimelodus microstoma	2				1	
Família Loricariidae						
Hypostomus albopunctatus				5	7	1
Hypostomus nigromaculatus				3	27	2
Hypostomus sp.				1		
Loricaria prolixa Ordem Gymnotiformes					1	
Família Sternopygidae						
Eigenmannia virescens				1		
Ordem Perciformes						
Família Cichlidae						
Geophagus brasiliensis	2			2	1	
Número de Indivíduos	139	2	0	3585	180	7
Total de Espécies	9	2	0	21	15	4
Riqueza	1,62	1,44	-	2,44	2,69	1,54
Diversidade	1,54	0,69	-	1,49	1,68	1,27
Equitabilidade	0,70	1,00	-	0,49	0,62	0,92

A Tabela 6 apresenta uma síntese dos dados biométricos das espécies de peixes capturadas nas 21 campanhas do presente estudo, onde os menores comprimentos e pesos foram observados para *Astyanax bockmanni*, enquanto que os maiores valores ocorreram para o piau-três-pintas, *Leporinus friderici* (Bloch, 1794).


De acordo com a classificação de Vazzoler (1996), utilizada nos trabalhos de Shibatta *et al.*(2002), a qual determina que peixes com comprimentos inferiores a 200 mm podem ser considerados como peixes de pequeno porte; entre 200 e 400 mm, peixes de médio porte; e comprimentos superiores a 400 mm, peixes de grande porte; a grande maioria das espécies coletadas no presente estudo (Tabela 6) pode ser considerada como de pequeno


porte. Tais resultados corroboram a afirmação de Castro (1999), de que a ictiofauna de riachos sul-americanos é composta predominantemente por indivíduos de pequeno porte.


Os exemplares de médio porte foram representados pelas espécies, *Hoplias malabaricus, Leporinus elongatus, Schizodon nasutus, Galeocharax knerii, Acestrorhynchus lacustris, Salminus hilarii, Rhamdia quelen, Iheringichthys labrosus, Hypostomus nigromaculatus, Hypostomus albopunctatus e Loricaria prolixa,* enquanto que *Leporinus friderici* (Bloch, 1794), *Brycon nattereri* e *Pimelodus maculatus* apresentaram indivíduos de grande porte, nas 21 campanhas realizadas até o momento (Tabela 6).

A Figura 17 apresenta as distribuições de frequência por classe de comprimento para *A. altiparanae*, espécie dominante em dezembro de 2015, onde se iniciaram as atividades de amostragem para o presente programa de monitoramento da Ictiofauna da PCH Presidente Vargas, bem como, nas últimas amostragens. A amplitude de variação do comprimento total foi de 6,5 a 14,5 cm, com picos de captura nas classes de 9,0, 10,0 e 11,0cm, com diferenças pontuais entre as áreas analisadas.

No ponto amostral 3, caracterizado por apresentar um sistema com corredeiras e maiores velocidades de corrente, a análise das distribuições de frequência por classe de comprimento, demonstra uma pequena participação de indivíduos nas classes inferiores, se comparado com as demais áreas, bem como, uma menor contribuição das classes de maior tamanho, estando ausentes indivíduos com comprimentos superiores a 13,0 cm (Figura 17). Estes dados muito provavelmente demonstram que o ponto 3 não seja uma área de recrutamento e reprodução para *A. altiparanae*, podendo representar apenas um trecho de alimentação ou passagem, a qual os indivíduos adultos conseguem explorar, a exemplo do observado no trabalho de Orsi *et al.* (2004) para o médio rio Paranapanema.

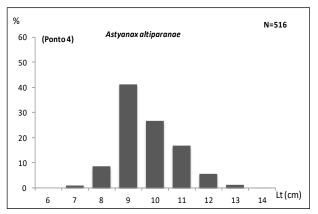
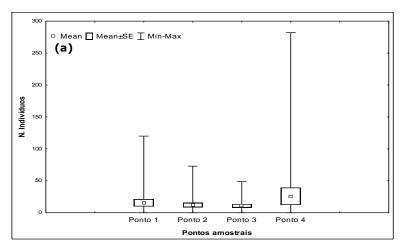



Figura 17. Distribuição de frequência por classe de comprimento para *Astyanax altiparanae*, nos pontos amostrais a montante (#3 e #4) e a jusante (#1 e #2) da PCH Presidente Vargas, nas 21 campanhas realizadas.

Os dados de abundância da espécie ao longo dos trechos amostrados (Figura 18) corroboram a afirmação de que o ponto 3 não constitui um ambiente favorável ao desenvolvimento da população de *A. altiparanae*, sendo observadas as menores abundâncias em relação aos demais pontos de amostragem. Tais padrões estão de acordo com o observado por Bennemann *et al.* (1995) e Shibatta *et al.* (2002), os quais verificaram baixas frequências destas espécies em trechos de correnteza acentuada do médio e alto rio Tibagi. A espécie apesar da elevada capacidade adaptativa, não se desenvolve plenamente em trechos mais caudalosos. Por outro lado, o ponto amostral 4, caracterizado por apresentar águas mais calmas e margeadas por vegetação ciliar bem preservada, muito possivelmente abriga diversas etapas do ciclo de vida de *A. altiparanae*. Neste ponto foi observada uma maior abundância de organismos (Figura 18a), bem como, uma maior diversidade de classes de comprimento (Figura 17), desde indivíduos juvenis a adultos de maior porte, em relação às demais áreas. Ou seja, a área onde está localizado o ponto 4 pode estar funcionando como local de alimentação, refúgio e reprodução para a espécie.

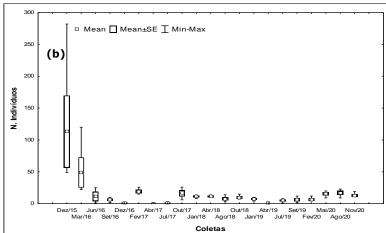
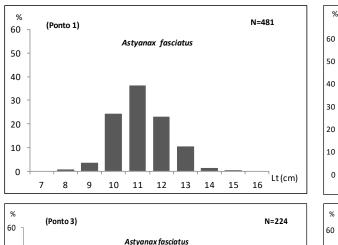
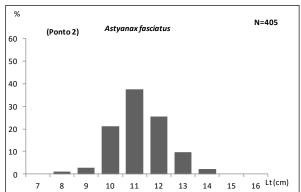
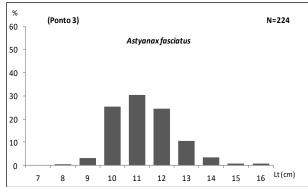


Figura 18. Variação média do número de indivíduos de *Astyanax altiparanae*, por ponto amostral (a) e ao longo do gradiente temporal de amostragem (b). O retângulo central indica a média e a caixa representa a variação do erro padrão em torno da média.

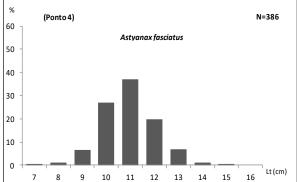

Como comentado anteriormente, a análise temporal da abundância de *A. altiparanae*, revelou uma diminuição na captura da espécie ao longo do período de coleta, com as maiores contribuições em dezembro de 2015, e as menores em junho e setembro de 2016. Os dados, muito possivelmente estão relacionados com a elevada vazão do rio, uma vez que a espécie não se desenvolve plenamente em ambientes muito caudalosos, sendo então gradativamente substituída por *Astyanax fasciatus* (Figura 18b). Por outro lado, as pequenas participações nas amostragens de dezembro de 2016, muito provavelmente estejam relacionadas ao volume de água muito baixo nos pontos amostrais, provocando o deslocamento da espécie para áreas mais profundas.

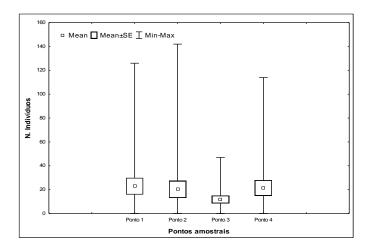

Em fevereiro de 2017 observa-se uma recuperação gradativa na abundância da espécie, passando a figurar novamente como a dominante nas amostragens, porém infeiror ao


mesmo período de 2016. Em abril de 2017, devido ao nível do rio ter ficado completamente sem água, em virtude das atividades de manutenção da PCH, não foi capturado nenhum exemplar de *A. altiparanae*, ao passo que em julho de 2017 foram capturados apenas três exemplares da espécie. Em Outubro de 2017, voltou a contribuir com as maiores abundâncias, com 65 indivíduos capturados, enquanto que em janeiro e abril de 2018, 45 exemplares estiveram presentes nas amostragens (Figura 18b).

Na campanha de agosto de 2018, foi a segunda espécie mais abundante (31 indivíduos), sendo substituída por *A. fasciatus*, enquanto em outubro deste ano, foi a terceira em abundância, sendo substituída por *G. knerii*. Em janeiro de 2019 foi novamente dominante ao longo dos pontos amotrais da PCH Presidente Vargas, enquanto que em abril de 2019, apenas três espécimes de *A. altiparanae* foram capturados, sendo novamente superada em abundância por *G. knerii*, a qual participou com cinco indivíduos, sendo a espécie numericamente mais abundante para este mês. Para os meses de julho e setembro de 2019, bem como em fevereiro de 2020, *A. altiparanae* foi a segunda espécie mais representativa, contribuíndo com 20, 26 e 26 exemplares respectivamente. Em maio, agosto e novembro de 2020, mais uma vez foi dominante nas amostragens (Figura 18b).

Para *A. fasciatus*, a amplitude de variação do comprimento total foi de 7,5 a 16,0 cm, com as maiores capturas ocorrendo nas classes de 10,0, 11,0 e 12,0 cm em todos os pontos amostrais (Figura 19).




Figura 19. Distribuição de frequência por classe de comprimento para *Astyanax fasciatus*, nos pontos amostrais a montante (#3 e #4) e a jusante (#1 e #2) da PCH Presidente Vargas, nas 21 campanhas realizadas.

Com relação à variação espacial da espécie, as maiores abundâncias ocorreram nos pontos 1 e 4, enquanto sazonalmente a espécie foi mais abundante em junho de 2016 (Figura 20). Tais resultados muito possivelmente indicam que *A. fasciatus*, em virtude do formato do corpo mais alongado, esteja adaptado a habitar ambientes um pouco mais caudalosos que *A. altiparanae*, resultando na sua dominância na bacia, durante as amostragens de junho e setembro de 2016, em que os trechos apresentavam maiores velocidades de corrente.

Nas amostragens de dezembro de 2016, assim como, o verificado para *A. altiparanae*, foi observado um declínio acentuado na abundância da espécie em virtude do baixo nível de água nos pontos de amostragem. Em fevereiro de 2017, as abundâncias foram ainda mais baixas, muito possivelmente em virtude da manutenção da pequena vazão apresentada pelo rio, em conjunto com uma provavel competição com *A. altiparanae* que como comentado, se sobressai em ambientes pouco caudalosos. Assim, como o observado para as demais espécies, as amostragens de abril de 2017 não capturaram nenhum indivíduo, ao passo que em julho de 2017, com o retorno do nível de água aos canais, houve um repovoamento do reservatório da PCH, sendo *A. fasciatus* a espécie dominante nas coletas. Em outubro de 2017, foi substituída por *A. altiparanae*, ocupando a segunda

posição em número de exemplares capturados, enquanto em janeiro e abril de 2018, foi a terceira espécie em abundância na baía, sendo superada por *G. knerii* e *A. altiparanae*.

Em agosto e outubro de 2018, novamente se apresentou como a espécie dominante nas coletas, enquanto que em janeiro de 2019 ocupou apenas a terceira posição em abundância. No mês de abril de 2019, apenas um indivíduo de *A. fasciatus* foi coletado nas amostragens, enquanto que em julho e setembro deste ano, caracterizou-se novamente como a espécie dominante nas coletas. Em fevereiro, maio e agosto de 2020, ocupou a segunda colocação nas capturas, com 26,50 e 35 espécimes capturados respectivamente. Em novembro de 2020, foi a terceira espécie mais abundante, com 46 indivíduos coletados (Figura 20).

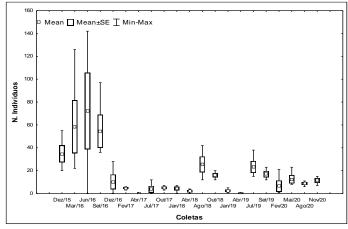


Figura 20. Variação média do número de indivíduos de *Astyanax fasciatus* por ponto amostral (a) e ao longo do gradiente temporal de amostragem (b). O retângulo central indica a média e a caixa representa a variação do erro padrão em torno da média.

Tabela 6. Frequência de ocorrência absoluta (N), Biomassa (g), Comprimento Médio total, Amplitude de Comprimento, Peso Médio total e Amplitude de Peso, das espécies de peixes capturadas nas áreas a montante e a jusante da PCH Presidente Vargas, nas 21 campanhas amostrais.

TAXA	N	Biomassa	Larg. Média	Amp.	Larg	Peso Médio	Amp	. Peso
				<	>		<	>
Ordem Characiformes								
Família Parodontidae								
Apareiodon piracicabae	8	310,99	14,78 ± 0,94	11,3	18,5	38,87 ± 5,97	18,72	66,52
Família Erythrinidae								
Hoplias malabaricus	4	4439,5	40,30 ± 3,87	35,0	51,5	1109,88 ± 295,79	609,51	1949,61
Família Anostomidae								
Leporinus elongatus	7	778,48	19,93 ± 2,17	11,0	27,5	111,21 ± 32,04	41,41	245,16
Leporinus friderici	8	3787,35	35,93 ± 7,15	12,0	63,0	473,42± 154,36	17,02	1250,23
Leporinus obtusidens	13	409,78	14,32 ± 0,61	11,0	18,1	31,52 ± 3,63	15,70	56,26
Schizodon nasutus	51	8151,99	22,06 ± 0,97	15,0	36,5	159,84 ± 23,26	31,26	524,47
Família Characidae								
Astyanax altiparanae	1304	21610,69	10,27 ± 0,03	6,5	14,5	16,57 ± 0,16	7,35	55,00
Astyanax bockmanni	308	4557,92	10,01 ± 0,08	7,0	14,5	14,80 ± 0,41	4,32	53,62
Astyanax fasciatus	1496	29451,32	11,51 ± 0,03	7,5	16,0	19,69 ± 0,16	7,05	43,01
Astyanax paranae	94	1170,93	$9,80 \pm 0,09$	7,5	12,0	12,46 ± 0,36	8,01	25,00
Brycon nattereri	1	436,33	-	-	-	-	-	-
Galeocharax knerii	415	31068,62	19,15 ± 0,22	10,0	32,0	74,86 ± 3,56	9,55	318,93
Oligosarcus paranensis	68	2283,40	$14,96 \pm 0,22$	10,6	18,3	33,58± 1,47	10,80	57,11
Acestrorhynchus lacustris	1	51,12	-	-	-	-	-	-
Família Salmininae								
Salminus hilarii	3	161,61	18,33 ± 0,60	17,5	19,5	53,87 ± 5,19	43,74	60,89
Ordem Siluriformes							- /	
Família Heptapteridae								
Rhamdia quelen	8	2779,92	28,98 ± 3,49	14,0	41,7	347,49 ± 100,66	20,03	832,48
Família Pimelodidae								
Iheringichthys labrosus	45	1157,49	15,16 ± 0,41	10,6	23,0	25,72 ± 2,19	7,33	70,72
Pimelodus maculatus	23	4365,91	24,88 ± 1,83	12,8	45,0	189,82 ± 41,11	22,71	735,62
Pimelodus microstoma	3	407,39	129,10 ± 6,71	11,8	13,5	135,80 ± 118,62	15,39	373,03
Família Loricariidae		107/05	123/10 = 0// 1	11/0	23/3	100/00 = 110/02	10/03	373703
Hypostomus albopunctatus	13	2157,71	22,51 ± 1,98	13,2	33,0	165,98 ± 37,46	24,69	401,63
Hypostomus nigromaculatus	32	7121,61	$27,60 \pm 0,91$	11,2	34,5	222,55 ± 15,64	14,20	402,37
Hypostomus sp.	1	13,72	27,00 = 0,51	-	-	-	-	-
Loricaria prolixa	1	210,24	-	-	-	-	_	_
Ordem Gymnotiformes	-							
Família Sternopygidae								
Eigenmannia virescens	1	18,11	-	-	-	-	-	-
Ordem Perciformes	-							
Família Cichlidae								
Geophagus brasiliensis	5	247,88	11,78 ± 2,75	7,0	22,5	49,57 ± 36,33	5,41	194,61

Através da análise de cluster aos dados de abundância da ictiofauna, ao longo das 21 amostragens do presente monitoramento, foi possível separar a comunidade de peixes da PCH Presidente Vargas, em três grandes grupos (Figura 21). No grupo I, encontramse agrupadas as espécies de maior representatividade numérica no presente estudo, composto pelas espécies dominantes e chaves na estruturação da comunidade ictiofaunística, *Astyanax altiparanae e Astyanax fasciatus*, em conjunto com *Astyanax bockmanni* e a Saicanga *Galeocharax knerii*. No grupo II, estiveram presentes as espécies com abundâncias intermediárias, sendo representado por *Schizodon nasutus, Oligosarcus paranensis, Hypostomus nigromaculatus, Astyanax paranae*, e *Iheringichthys labrosus* (Figura 21).

O grupo III foi formado pelas espécies menos frequentes e com baixa espressividade numérica, compreendendo: Apareiodon piracicabae, Leporinus friderici, Rhamdia quelen, Hypostomus albopunctatus, Leporinus obtusidens, Pimelodus maculatus, Hoplias malabaricus, Geophagus brasiliensis, Pimelodus microstoma e Leporinus elongatus, além de Brycon nattereri, Acestrorhynchus lacustris, Salminus hilarii, Hypostomus sp., Loricaria prolixa e Eigenmannia virescens (Figura 21). Tais resultados reforçam a existência de relações interespecíficas de competição e segregação de nichos na composição da comunidade de peixes da PCH Presidente Vargas apresentada e amplamente discutida no presente estudo.

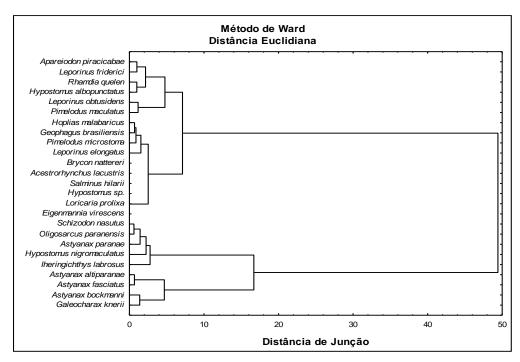


Figura 21. Dendrograma de agrupamento, com base nos dados de abundância das espécies de peixes capturadas nos pontos amostrais a montante (#3 e #4) e a jusante (#1 e #2) da PCH Presidente Vargas, ao longo das 21 amostragens.

Por fim, durante as 21 amostragens para o Programa de Monitoramento da Ictiofauna da PCH Presidente Vargas foi observada a presença da espécie *Brycon nattereri* (Günther, 1864), que se encontra listada como VU (vulnerável) na Lista das Espécies da Fauna Brasileira Ameaçadas de Extinção (MMA, 2008), Lista das Espécies da Fauna Ameaçadas de Extinção no Paraná (CURITIBA, 2006) e nas Instruções Normativas MMA Nº 5/2004/2005 e IN MMA Nº 445 de 17 de dezembro de 2014 (Tabela 7).

Esta espécie já havia sido relatada para a região, nos trabalhos de Shibatta *et al.* (2002), Langeani *et al.* (2007) e Shibatta *et al.* (2007), indicando que apesar dos impactos sofridos ao longo dos trechos do rio Tibagi, algumas áreas ainda encontram-se relativamente preservadas. Como no caso do presente estudo, o ponto amostral 4, margeado por uma vegetação ciliar bem preservada, onde foi registrada a presença de *B. nattereri*.

Na 11ª campanha amostral foi registrada a ocorrência da tabarana *Salminus hilarii,* a qual se encontra classificada como quase ameaçada (NT) na lista de Espécies de peixes ameaçadas do Paraná (CURITIBA, 2006).

Tabela 7. Nomenclatura científica e vulgar e status de conservação das espécies capturadas no presente estudo, para o Programa de Monitoramento Ambiental da Ictiofauna da PCH Presidente Vargas.

	Name		Status	de Conse	rvação	
TAXA	Nome Vulgar	CURITIBA 2006	MMA (2008)	MMA (2014)	IUCN (2016)	Exótica
Ordem Characiformes						
Família Parodontidae						
Apareiodon piracicabae (Eigenmann, 1907)	canivete	NC	NC	NC	NC	NÃO
Família Erythrinidae						
Hoplias malabaricus (Bloch, 1794)	traíra	NC	NC	NC	NC	NÃO
Família Anostomidae						
Leporinus elongatus Valenciennes, 1849	piapara	NC	NC	NC	NC	NÃO
Leporinus friderici (Bloch, 1794)	piau 3 pintas	NC	NC	NC	NC	NÃO
Leporinus obtusidens (Valenciennes, 1847)	piau	NC	NC	NC	LC	NÃO
Schizodon nasutus Kner, 1859	chimboré	NC	NC	NC	NC	NC
Família Characidae						
Astyanax altiparanae Garutti & Britski, 2000	lambari-de- rabo- amarelo	NC	NC	NC	NC	NÃO
Astyanax bockmanni Vari & Castro, 2007	lambari	NC	NC	NC	NC	NÃO
Astyanax fasciatus (Cuvier, 1819)	lambari-de- rabo- vermelho	NC	NC	NC	NC	NÃO
Astyanax paranae Eigenmann, 1914	lambari	NC	NC	NC	NC	NÃO
Brycon nattereri Günther, 1864	pirapitinga	VU	VU	VU	NC	NÃO
Galeocharax knerii (Steindachner, 1879)	saicanga	NC	NC	NC	NC	NÃO
Oligosarcus paranensis Menezes & Géry, 1983	saicanga	NC	NC	NC	NC	NÃO
Acestrorhynchus lacustris (Lütken, 1875)	bocarra	NC	NC	NC	NC	NÃO
Subfamília Salmininae						
Salminus hilarii (Valenciennes, 1849)	tabarana	NT	NC	NC	NC	NÃO
Ordem Siluriformes						
Família Heptapteridae						
Rhamdia quelen (Quoy & Gaimard, 1824)	bagre, jundiá	NC	NC	NC	NC	NÃO
Família Pimelodidae	J					
Iheringichthys labrosus (Kröyer, 1874)	mandi- beiçudo	NC	NC	NC	NC	NÃO
Pimelodus maculatus Lacépède, 1803	mandi	NC	NC	NC	NC	NÃO
Pimelodus microstoma Steindachner, 1877	mandi	NC	NC	NC	NC	NÃO
Família Loricariidae						
Hypostomus albopunctatus (Regan, 1908)	cascudo	NC	NC	NC	NC	NÃO
Hypostomus nigromaculatus (Schubart, 1964)	cascudo	NC	NC	NC	NC	NÃO
Hypostomus sp	cascudo	-	-	-	-	-
Loricaria prolixa Isbrücker & Nijssen, 1978	cascudo- chinelo	NC	NC	NC	NC	NÃO
Ordem Gymnotiformes	2.10					

	Nome	Status de Conservação					
TAXA	Vulgar	CURITIBA 2006	MMA (2008)	MMA (2014)	IUCN (2016)	Exótica	
Família Sternopygidae							
Eigenmannia virescens (Valenciennes, 1847)	tuvíra/ituí- transparente	NC	NC	NC	NC	NÃO	
Ordem Perciformes							
Família Cichlidae							
Geophagus brasiliensis (Quoy & Gaimard, 1824)	cará/acará	NC	NC	NC	NC	NÃO	

5 CONCLUSÕES

As ordens Characiformes e Siluriformes foram dominantes em número de espécies e abundância de exemplares no presente estudo, onde a predominância de Characidae esteve fundamentada na elevada contribuição das espécies *Astyanax fasciatus* e *Astyanax altiparanae*, possivelmente associada à grande capacidade adaptativa das mesmas.

Além destas, foi observada simpatria entre outras duas espécies do gênero *Astyanax*, (*Astyanax bockmanni* e *Astyanax paranae*) com participações distintas ao longo dos pontos amostrais, o que demonstrou as diferentes formas de ocupação ao longo do gradiente amostral, provavelmente em função das estratégias alimentares e utilização do espaço.

A partir das análises das amplitudes de comprimento, bem como, dos comprimentos médios das espécies capturadas, observou-se que a grande maioria dos exemplares apresentou pequeno porte, o que esteve de acordo com o encontrado ao longo dos sistemas de água doce sul-americanos.

Entre os pontos amostrais analisados, o ponto 4, caracterizado por apresentar águas mais calmas, margeado com uma mata ciliar bem preservada, aparentemente tem apresentado melhores condições para o desenvolvimento da assembleia de peixes local, contribuindo com as maiores abundâncias e diversidades de peixes, com quatro espécies exclusivas deste ambiente.

Dentre as espécies de peixes capturadas, foi observada a presença de *Brycon nattereri* (Günther, 1864), que se encontra listada como VU (vulnerável) na Lista das Espécies da Fauna Brasileira Ameaçadas de Extinção, indicando que alguns trechos do rio Tibagi,

como por exemplo, o ponto amostral 4 (onde foi encontrada esta espécie), ainda apresentam-se relativamente preservados.

As principais mudanças na comunidade de peixes no presente estudo estiveram relacionadas à alternância entre a dominância das populações de *A. altiparanae* e *A. fasciatus* ao longo das 21 investidas amostrais. O predomínio foi da primeira (*A. altiparanae*), durante as coletas de dezembro de 2015 e redução na época de seca (março de 2016), bem como, em junho e setembro de 2016, devido às elevadas velocidades de corrente, o que esteve de acordo com a biologia da espécie. Apesar da grande capacidade adaptativa, essa espécie não se desenvolve plenamente em ambientes de elevadas correntezas. Tal diminuição, provavelmente tenha disponibilizado um nicho de espaço para a ocupação de *A. fasciatus* (possível competidora com *A. altiparanae*, pois geralmente explora os mesmos recursos, bem como, se distribui na mesma faixa da coluna d'água), que apresentou um aumento expressivo na abundância dos exemplares especialmente em junho de 2016.

Considerando a diversidade funcional destas duas espécies, levando em conta a anatomia do corpo, por apresentar um formato fusiforme, *A. fasciatus* caracteriza-se como melhor nadadora do que *A. altiparanae*, que possui o corpo mais alto, o que em caso de competição por espaço, muito provavelmente tenha beneficiado *A. fasciatus*, quando do aumento das velocidades de corrente em junho e setembro de 2016.

Além da alternância entre as populações de *A. fasciatus* e *A. altiparanae*, cabe ressaltar a flutuação dos Siluriformes ao longo do estudo, com destaque para os incrementos observados durante a quinta amostragem (dez/16), onde se observou um aumento na abundância de cascudos da família Loricaridae, muito provavelmente devido ao baixo nível apresentado pelos rios e deslocamento dos Astyanax para regiões mais profundas.

Nas amostragens realizadas em fevereiro de 2017 (sexta campanha) é importante mencionar a elevada participação das espécies carnívoras, com destaque para a Saicanga *Galeocharax knerii*, que foi a segunda espécie mais abundante nas coletas, corroborando a importância das relacões interespecíficas, especialmente vinculadas à alimentação/predação exercida pelas carnívoras, na estruturação das assembléias ícticas.

As amostragens de abril de 2017, não capturaram exemplares de peixes ao longo dos pontos amostrais, o que esteve relacionado com as atividades de manutenção da PCH Presidente Vargas, uma vez que o nível do rio apresentava-se em alguns pontos,

completamente sem água. Com o término da manutenção e restabelecimento do nível de água nos meses subsequentes foi observado um repovoamento da ictiofauna (campanha oito), entretanto, as abundâncias, bem como, o número de espécies, riqueza e diversidade foram significativamente mais baixos se comparado com os períodos iniciais de monitoramento, o que apesar de esperado, (perante o impacto sofrido na comunidade), possa também estar relacionado com o furto das redes de coleta em dois dias seguidos nos pontos amostrais 3 e 4.

Em outubro de 2017, foram observados incrementos significativos no número e na diversidade de espécies ícticas na PCH, o que em conjunto com a análise da composição específica, demonstra uma recuperação da comunidade perante aos impactos provenientes das atividades de manutenção da PCH, conforme supracitado. As coletas de janeiro e abril de 2018 seguiram esta mesma tendência de recuperação, com pequenos incrementos e oscilações nestes dois parâmetros, ao passo que em agosto de 2018, foi observada uma leve diminuição no número de indivíduos e espécies capturadas, muito possivelmente ao baixo volume do rio durante as amostragens, em virtude das estiagens, voltando a apresentar incrementos em outubro de 2018. Em janeiro de 2019, novamente o rio apresentava-se com baixa vazão, resultando em uma pequena abundância de peixes, o que foi igualmente observado em abril deste ano, onde foram capturados apenas 17 exemplares ao longo dos pontos amostrais da PCH Presidente Vargas. Em julho de 2019, foi observado um pequeno aumento, tanto no número de indivíduos capturados, quanto no número de espécies registradas, o qual se manteve constante até maio de 2020, com pequenos incrementos nos indíces de diversidade e equitabilidade da comunidade. Em agosto de 2020, apesar das abundâncias terem se mantido constantes; apenas quatro espécies foram coletadas ao longos dos pontos amostrais da PCH, o que reduziu os indíces de diversidade da comunidade icitiofaunística, muito provavelmente vinculadas as próprias variações naturais das espécies, onde é comum se observar menores rendimentos nos meses mais frios. Em novembro de 2020, novamente foram observados incrementos nas capturas e nos índices de diversidade de peixes, muito provavelmente vinculados com as elevadas temperaturas, as quais favorecem as capturas nestas épocas do ano.

De um modo geral, até o presente momento, a comunidade ictiofaunística da Pequena Central Hidrelétrica de Presidente Vargas, parece ser moldada principalmente pela vazão do rio, seja de forma natural (regime de secas e inundações) ou antrópica (abertura das barragens, bem como, atividades de manutenção). Tais flutuações têm contribuído de

forma direta no deslocamento das populações de peixes, nas relações interespecíficas e estruturação da comunidade, como demonstrado ao longo deste estudo.

Por fim, a composição específica observada no presente estudo, com 25 espécies levantadas para um trecho local da região média do rio Tibagi, parece se enquadrar no padrão de assembleias locais de peixes, dos sistemas de água doce neotropicais. Contudo, a continuidade das amostragens, provavelmente contribuirá para uma descrição mais aproximada da composição da comunidade de peixes na região de estudo, que segundo pesquisadores renomados da região, ainda precisa ser exaustivamente explorada, pois é comum o aparecimento de novas espécies (corroborado com este estudo/monitoramento, visto a ocorrência da tabarana, *Salminus hilarii*, na 11ª e da bocarra, *Acestrorhynchus lacustris*, na 16ª coleta). Além disto, tais estudiosos são categóricos ao afirmar que para se avaliar e propor medidas de manejo eficazes para os possíveis impactos das atividades do setor elétrico sobre as diferente populações de peixes na bacia, é fundamental que se conheça a distribuição, além dos padrões de utilização dos diferentes ambientes ao longo da bacia, reforçando a importância na continuidade dos estudos na região.

6 REFERÊNCIAS BIBLIOGRÁFICAS

ARAÚJO-LIMA, C. A. R., AGOSTINHO, A. A. & FABRÉ, N. N. 1995. Trophic aspects of fish communities in Brazilian rivers and reservois. *In* TUNDISI, J. G.; BICUDO, C. E. M.; MATSUMURA-TUNDISI, T (Ed). Limnology in Brazil. Rio de Janeiro: ABC/SBL. P 105-136.

AZPELICUETA, M. de las. M. & BRITSKI, H. A. 2012. *Iheringichthys syi* (Siluriformes: Pimelodidae), a new pimelodidae species from upper Paraná basin, Brazil. Neotropical Ichthyology, 10(1): 45-52.

BAUMGARTNER, G., PAVANELLI, C. S., BAUMGARTNER, D., BIFI, A. G., DEBONA, T. & FRANA, V. A. 2012. Peixes do baixo rio Iguaçu [online]. Maringá: Eduem, 2012. 203 p. ISBN 978-85-7628-586-1. Available from SciELO Books http://books.scielo.org.

BENNEMANN, S. T., SILVA-SOUZA, A. T. & ROCHA, G. R. A. 1995. Composicion ictiofaunistica en cinco localidades de la cuenca del rio Tibagi PR - Brasil. Interciencia, 20: 7-13.

BENNEMANN, S. T., SHIBATTA, O. A. & GARAVELLO, J. C. 2000. Peixes do rio Tibagi: uma abordagem ecológica. Londrina, Ed UEL. 62p.

BENNEMANN, S. T. & SHIBATTA, O. A. 2002. Dinâmica de uma assembléia de peixes do rio Tibagi. *In:* MEDRI, M. E.; BIANCHINI, E.; SHIBATTA, O. A. & PIMENTA, J. A. Eds. A bacia do rio Tibagi. Londrina, Universidade Estadual de Londrina. p. 433-442.

BENNEMANN, S. T., GEALH, A. M., ORSI, M. L. & SOUZA, L. M. 2005. Ocorrência e ecologia trófica de quatro espécies de *Astyanax* (Characidae) em diferentes rios da bacia do rio Tibagi, Paraná, Brasil. Iheringia, Sér. Zool., Porto Alegre, 95(3): 247-254.

BONETTO, A. A. 1986. The Paraná river system. *In* The ecology of river systems (B.R. Davies & K.F. Walker, eds.). Dr. W. Junk Publishers, Dordrecht, p. 541-555.

BRITO, S. G. C., SIROL, R. N.; VIANNA, N. C., JARDIM, M. S., dos SANTOS, J. C. & PELISARI, E. 2008. Peixes do rio Paranapanema. Editora Horizonte, p. 120.

BRITSKI, H. A. 1972. Peixes de água doce do estado de São Paulo. *In:* Comissão Internacional da Bacia Paraná – Paraguai. Poluição e piscicultura. São Paulo, Faculdade de Saúde Pública da USP e Instituto de Pesca. p.79-108.

BRITSKI, H. A., BIRINDELLI, J. L. O., GARAVELLO, J. C. A new species of *Leporinus agassiz*, 1829 from the upper Rio Paraná basin (Characiformes, Anostomidae) with redescription of *L. elongates* Valenciennes, 1850 and *L. obtusidens* (Valenciennes, 1837). Papéis Avulsos de Zoologia. 52(37): 441-475, 2012.

BUCKUP, P.A., MENEZES, N. A. & GHAZZI, M. S. 2007. Catálogo das espécies de peixes de água doce do Brasil. Rio de Janeiro, Museu Nacional.

CASATTI, L., LANGEANI, F. & CASTRO, R. M. C. 2001. Peixes de riacho do Parque Estadual Morro do Diabo, bacia do Alto Rio Paraná, SP. Biota Neotropica 1: 1-15

CASTRO, R. M. C. 1999. Evolução da ictiofauna de riachos sul-americanos: padrões gerais e possíveis processos causais. In Ecologia de peixes de riachos (E.P. CARAMASCHI, R. MAZZONI & P. R. PERES-NETO, Eds.). Série Oecologia Brasiliensis, PPGE-UFRJ, Rio de Janeiro, p.139-155.

CASTRO, A. C. L. 2001. Diversidade da assembléia de peixes em Igarapés do estuário do rio Paciência (MA – Brasil). Atlântica, Rio Grande, 23: 39-46.

CASTRO, R. M. C., CASATTI, L., SANTOS, H. F., FERREIRA, K. M., RIBEIRO, A.C., BENINE, R. C., DARDIS, G. Z. P., MELO, A. L. A., STOPIGLIA, ABREU, T. X., BOCKMANN, F. A., CARVALHO, M., GIBRAN, F. Z. & LIMA, F. C. T. 2003. Estrutura e composição da ictiofauna de riachos do Rio Paranapanema, sudeste e sul do Brasil. Biota Neotropica 3:1-31.

COX, C. B. & MOORE, P. D. 2000. Biogeography, an ecological and evolutionary approach. Blackwell Science, London.

CURITIBA, 2006. Fauna do Paraná em Extinção. Instituto Ambiental do Paraná, 272p.

DE FRANÇA, V. 2002. O rio Tibagi no contexto hidrográfico parananense. *In* A bacia do rio Tibagi (M.E. Medri, E. Bianchini, O.A. Shibatta & J.A. Pimenta, eds.). M. E. Medri, Londrina, p.45-61.

FERREIRA, E. J. G. 1993. Composição, distribuição e aspectos ecológicos da ictiofauna de um trecho do rio Trombetas, na área de influência da futura UHE Cachoeira Porteira, Estado do Pará, Brasil. Acta Amazonica 23(Supl.1/4): 1-88.

GARAVELLO, J. C.; BRITSKI, H. A. & ZAWADZKI, C. H. 2012. The cascudos of genus *Hypostomus* Lacépéde (Ostariophysi: Loricariidae) from the rio Iguaçu basin. Neotropical Ichthyology, 10(2): 263-283.

HOFFMANN, A. C., ORSI, M. L., SHIBATTA, O. A. 2005. Diversidade de peixes do reservatório da UHE Escola Engenharia Mackenzie (Capivara), rio Paranapanema, bacia do alto rio Paraná, Brasil e a importância dos grandes tributários na sua manutenção. Iheringia, Série Zoologia, Porto Alegre, 95:3 319-325.

HOFFMANN, A. C., NASCIMENTO, R. H. C. & SHIBATTA, O. A. 2015. Fish fauna from tributaries throughout the Tibagi River basin, upper Paraná basin, Brazil. Check List 11(6): 1815, doi: http://dx.doi.org/10.15560/11.6.1815 ISSN 1809-127X ©.

IUCN, 2016. http://www.iucnredlist.org/. Acesso em 20 de janeiro de 2016.

INGENITO, L.F. S., DUBOC, L. F. & ABILHOA, V. 2004. Contribuição ao conhecimento da ictiofaunada bacia do alto rio Iguaçu, Paraná, Brasil. Arquivos de Ciências Veterinárias e Zoologia da UNIPAR, Umuarama,7(1):1 23-36.

LANGEANI, F., CASTRO, R. M. C., OYAKAWA, O. T., SHIBATTA, O. A., PAVANELLI, C. S. & CASATTI, L. 2007. Diversidade da ictiofauna do Alto rio Paraná: composição atual e perspectivas futuras. Biota Neotropica. 7(3): http://www.biotaneotropica.org.br/v7n3/pt/abstract?article+bn03407032007

LOWE-McCONNELL, R. H. 1999. Estudos ecológicos de comunidades de peixes tropicais. Editora da Universidade de São Paulo, São Paulo, Brasil, 534 p.

LYONS, J., NAVARRO-PÉREZ, S., COCHRAN, P. A., SANTANA, C. & GUZMÁN-ARROYO, M. 1995. Index of biotic integrity based on fish assemblages for the conservation of streams and rivers in west-central México. Cons. Biol. 9(3): 569-584.

MARCENIUK, A. P., HILSDORF, A. W. da SILVA. & LANGEANI, F. 2011. A ictiofauna de cabeceiras do rio Tietê, São Paulo, Brasil. Biota Neotropica. 11(3): http://www.biotaneotropica.org.br/v11n3/en/abstract?inventory+bn00311032011.

MATTHEWS, W.J. 1998. Patterns in freshwater fish ecology. Thomson Publ. Chapman & Hall, New York.

NELSON, J. S. 2006. Fishes of the world. John Wiley & Sons, New York.

ORSI, M. L.; CARVALHO, E. D. & FORESTI, F. 2004. Biologia populacional de *Astyanax altiparanae* Garutti & Britski 2000 (Teleostei, Characidae) do médio rio Paranapanema, Paraná, Brasil. Revista Brasileira de Zoologia 21(2):207-218.

PELICICE, F. M., AGOSTINHO, A. A. & GOMES, L. C. 2005. Biodiversidade e conservação de peixes na planície de inundação do alto rio Paraná. Caderno de Biodiversidade. 5(1): 34-44.

PEREIRA, M. C. B. & SCROCCARO, J. S. 2010. Bacias Hidrográficas do Paraná: Série Histórica. SEMA-PARANÁ.

RAIO, C. B. & BENNEMANN, S. T. 2010. A ictiofauna da bacia do rio Tibagi e o projeto de construção da UHE Mauá, Paraná, Brasil. Semina: Ciências Biológicas da Saúde , Londrina. 31(1): 15-20.

REIS, R. E., KULLANDER, S. O. & FERRARIS-JR., C. J. 2003. Check list of the freshwater fishes of South and Central America. EDIPUCRS, Porto Alegre.

RIBEIRO, F.R.V. & LUCENA, C.A.S. 2007. *Pimelodus microstoma* Steindachner, 1977, a valid species of pimelodid catfish (Siluriformes: Pimelodidae) from the upper rio Paraná drainage. Neotropical Ichthyology 5(1):75-78.

ROSA, R. S. & LIMA, F, C. T. 2008. Os Peixes Brasileiros Ameaçados de Extinção. p. 278.

SANT'ANNA, J. F. M., ALMEIDA, M. C., VICARI, M. R., SHIBATTA, O. A. & ARTONI, R. F. 2006. Levantamento rápido de peixes em uma lagoa marginal do rio Imbituva na bacia do alto rio Tibagi, Paraná, Brasil. Biologia e Saúde, Ponta Grossa. 12 (1): 39-46.

SCHAEFER, S. A. 1998. Conflict and resolution: impact of new taxa on phylogenetic studies of the neotropical cascudinhos (Siluroidei: Loricariidae). In: Malabarba LR, Reis RE, Vari RP, Lucena ZMS, Lucena CAS (ed). Phylogeny and Classification of Neotropical Fishes. Porto Alegre, EDIPUCRS, p: 375-400.

SHIBATTA, O. A.; ORSI, M. L.; BENNEMANN, S. T. & SILVA-SOUZA, A. 2002. Diversidade e distribuição de peixes na bacia do rio Tibagi. In: MEDRI, M. E.; BIANCHINI, E.;

SHIBATTA, O. A. & PIMENTA, J. A. 2002. A bacia do rio Tibagi. Londrina, Universidade Estadual de Londrina. p 403-423.

SHIBATTA, O. A.; GEALH, A. M. & BENNEMANN, S. T. 2007. Ictiofauna dos trechos alto e médio da bacia do rio Tibagi, Paraná, Brasil. Biota Neotropical. 7(2): 125-134.

VARI, R. P. & CASTRO, R. M. C. 2007. New Species of *Astyanax* (Ostariophysi: Characiformes: Characidae) from the Upper Rio Paraná System, Brazil. Copeia. (1): 150-162. http://dx.doi.org/10.1643/0045-8511(2007)7[150:NSOAOC]2.0.CO;2

VAZZOLER, A. E. A. M. 1996. Biologia de reprodução de peixes teleósteos: teoria e prática. Maringá, SBI/EDUEM, 129p.

YÁÑEZ-ARANCIBIA, A. 1985 The estuarine nekton: why and how an ecological monograph. Preface. In: Yáñez-Arancibia, A. Fish community ecology in estuaries and coastal lagoons: towards an ecosystem integration. Mexico: UNAM, p. 1-8.

Klabin Celulose S.A.

Programa de Monitoramento da Avifauna na Pequena Central Hidrelétrica Salto Mauá Klabin Celulose S.A.

SUMÁRIO

1.	DADOS DO EMPREENDEDOR	. 1-6
2.	DADOS DA EMPRESA RESPONSÁVEL PELO ESTUDO	. 2-7
3.	EQUIPE TÉCNICA	. 3-8
4.	INTRODUÇÃO	. 4-9
5.	LOCALIZAÇÃO DO EMPREENDIMENTO	. 5-9
6.	OBJETIVOS	6-11
6.1.	CAMPANHAS AMOSTRAIS	6-11
6.2.	METODOLOGIAS DE AMOSTRAGEM E COLETA	6-11
Dad	los Secundários	6-11
Dad	los Primários	6-12
c) A	nálise de Dados	6-17
7.	Resultados	7-20
7.1.	Análise qualitativa	7-20
7.1.	2. Espécies endêmicas	7-47
7.2.	Análises quantitativas	7-48
8.	CONSIDERAÇÕES FINAIS	8-56
9.	Referências Bibliográficas	9-58

LISTA DE FIGURAS

Figura 1. Localização da PCH Salto Mauá, em relação ao Rio Tibagi e as cidades de
Ortigueira e Telêmaco Borba 5-10
Figura 2. Material utilizado para visualização, identificação e registro da avifauna presente
nas áreas de influência da PCH Salto Mauá 6-13
Figura 3. Biólogo realizando a anotação referente a avistagem de aves e gravação da
avifauna no levantamento em transectos 6-14
Figura 4. A= Representação esquemática do método de Ponto de Contagem com Raio Fixo
(Fixed-Radius Point Counts) e B= Observador realizando um dos pontos de contagem em
Áreas de Monitoramento 6-15
Figura 5. Mapa da área de monitoramento com a representação dos 8 pontos de contagem
com raio fixo e transectos do Programa de Monitoramento da Avifauna na Pequena Central
Hidrelétrica (PCH) Salto Mauá da Klabin Celulose S.A 6-16
Figura 6. Número de espécies registradas nos levantamentos de dados secundários e
primários durante o Programa de Monitoramento da Avifauna na Pequena Central
Hidrelétrica Salto Mauá
Figura 7. Espécies registradas durante as campanhas de monitoramento da avifauna na
PCH Salto Mauá. A) Todirostrum poliocephalum; B) Pipraeidea melanonota; C)
Thamnophilus ruficapillus; D) Saltator similis; E) Nyctidromus albicollis; F) Cyanoloxia
glaucocaerulea7-45
Figura 8. Espécies registradas durante as campanhas de monitoramento da avifauna na
PCH Salto Mauá. A) Psittacara leucophtalmus; B) Cyanocorax chrysops; C) Hirundinea
ferruginea; D) Megarhynchus pitangua; E) Tachycineta albiventer; F) Sporophila lineola7-
46
Figura 9. Espécies endêmicas registradas durante as campanhas de monitoramento da
avifauna na PCH Salto Mauá. A) Todirostrum poliocephalum, B) Attila rufus, C) Brotogeris
tirica7-47
Figura 10. Índice Pontual de Abundância (IPA) de cada espécie registrada durante as
campanhas de monitoramento da avifauna na PCH Salto Mauá
Figura 11. Espécies com maiores valores de IPA registradas nas campanhas do
Monitoramento da Avifauna na Pequena Central Hidrelétrica (PCH) Salto Mauá da Klabin
Celulose, em ordem decrescente
Figura 12. FR (Frequência Relativa) em porcentagem das espécies registradas nas
campanhas do Monitoramento da Avifauna na Pequena Central Hidrelétrica (PCH) Salto
Mauá da Klabin Celulose, em ordem decrescente

Figura 13. Perfil de Diversidade utilizando a Série de Rényi durante as campanhas	do
Programa de Monitoramento da Avifauna na Pequena Central Hidrelétrica Salto Mauá7	'-55
Figura 14. Curva de rarefação realizada pelo software R Statistics	'-56

LISTA DE TABELAS

Tabela 1. Coordenadas geográficas dos Pontos de Contagem com Raio Fixo do Programa
de Monitoramento da Avifauna na Pequena Central Hidrelétrica (PCH) Salto Mauá da Klabin
Celulose S.A 6-15
Tabela 2. Espécies da avifauna de provável ocorrência e registradas no Monitoramento da
Avifauna na Pequena Central Hidrelétrica (PCH) Salto Mauá da Klabin Celulose S.A.,
conforme a literatura consultada e registros realizados durante as campanhas realizadas
nos monitoramentos pretéritos (Terra Indígena Mococa - 2017, Projeto PUMA - 2013 a
2017) e campanhas atuais (julho/2019; fevereiro/2020). São apresentados os nomes dos
táxons, nome comum, tipo de registro e status de conservação de cada espécie 7-21
Tabela 3. Espécies da avifauna endêmicas de provável ocorrência para a área de estudo e
registradas durante a campanha de monitoramento da avifauna na PCH Salto Mauá, em
julho/2019 e fevereiro/2020 7-47
Tabela 4. Número de Indivíduos de cada espécie registrada nas campanhas de julho/2019
e fevereiro/2020 do Monitoramento da Avifauna na Pequena Central Hidrelétrica (PCH)
Salto Mauá da Klabin Celulose 7-49
Tabela 5. Dados Climatológicos referente aos meses de Janeiro e Fevereiro de 2020 para
o município de Telêmaco Borba, PR 7-54
Tabela 6. Índices de Diversidade calculados com o auxílio do <i>software</i> PAST nas campanhas
de julho de 2019 e fevereiro de 2020 onde método quantitativo foi aplicado 7-54

1. DADOS DO EMPREENDEDOR

Razão Social: KLABIN CELULOSE S.A. Nome Fantasia: KLABIN CELULOSE S.A. Número do CNPJ: 89.637.490/0165-72

Endereço: Fazenda Apucarana Grande, s/n, Km 2, Bairro Distrito de Natingui,

Ortigueira/PR; CEP: 84.350-000

CEP 84.350-000

Telefone:

Home page: www.klabin.com.br

2. DADOS DA EMPRESA RESPONSÁVEL PELO ESTUDO

Razão Social: ACQUAPLAN Tecnologia e Consultoria Ambiental Ltda.

Nome Fantasia: ACQUAPLAN CNPJ: 06.326.419/0001-14

Cadastro Técnico Federal - IBAMA: 658878

Registro CREA-SC: 074560-2

Endereço para Correspondência: Av. Rui Barbosa, 372, apto. 103, Praia dos Amores,

Balneário Camboriú - SC

CEP: 88331-510

Telefone: (47) 3366-1400

Fax: (47) 3366-7901

E-Mail: acquaplan@acquaplan.net Home page: www.acquaplan.net Responsável: Fernando Luiz Diehl

3. EQUIPE TÉCNICA

NOME	FORMAÇÃO	ÁREA DE ATUAÇÃO REGISTRO IBAMA		REGISTRO PROFISSIONAL
Josiane Rovedder, MSc.	Bióloga	Coordenação/Meio Biótico/Fauna Terrestre/Avifauna	355459	CRBio 45049-03/D
Bruna Vivian Brites, MSc.	Bióloga	Apoio/Meio Biótico/Fauna Terrestre/Revisão Geral	4083303	CRBio 63402-03/D
Reinaldo Dutra Junior	Biólogo	Apoio/Meio Biótico/Avifauna	7222002	CRBio 108389-07/D
Jean Berná Paim	Oceanógrafo	Geoprocessamento	554494	AOCEANO 2124

4. INTRODUÇÃO

A biodiversidade de aves brasileiras é uma das mais ricas do mundo, contando atualmente com 1.919 espécies registradas em seu território (PIACENTINI *et al.*, 2015). O Brasil, juntamente com o Peru e Colômbia, são os países com maior riqueza de aves no mundo (REMSEN *et al.*, 2016). O Brasil é também o país com maior número de espécies globalmente ameaçadas de extinção (BIRDLIFE INTERNATIONAL, 2017). A perda, degradação e fragmentação de *habitats* e a caça especialmente para o comércio ilegal – são as principais ameaças às aves brasileiras (MARINI & GARCIA, 2005).

A fauna ornitológica do Estado do Paraná é composta por 744 espécies (SCHERER-NETO et al., 2011), o que corresponde a 38,8% a avifauna conhecida para o território brasileiro (PIACENTINI et al., 2015), dando uma ideia muito satisfatória da diversidade da avifauna estadual. A riqueza elevada é proporcionada, principalmente pela diversidade de fisionomias vegetais: Floresta Ombrófila Densa, Floresta Ombrófila Mista, Floresta Estacional Semidecidual, Campos Naturais e Cerrado, além de ambientes aquáticos diversos (SCHERER-NETO et al., 2011).

O objetivo do presente monitoramento é a apresentação dos objetivos, métodos e resultados dentro do escopo do Monitoramento da Avifauna nas áreas adjacentes da PCH Salto Mauá.

5. LOCALIZAÇÃO DO EMPREENDIMENTO

A Pequena Central Hidrelétrica Salto Mauá está localizada no rio Tibagi, na divisa dos municípios de Telêmaco Borba e Ortigueira (Figura 1). Foi licenciada com objetivo de atender às necessidades das indústrias da Klabin e de alguns núcleos habitacionais da região, como Lagoa e Harmonia, na Fazenda Monte Alegre.

O reservatório da PCH possui uma área equivalente a 7,64 hectares, limitada a norte pela sua barragem e a sul pela barragem da Usina Hidrelétrica Mauá. A bacia hidrográfica que drena diretamente para o reservatório da PCH Salto Mauá corresponde a uma área de 351 hectares, algo em torno de 0,014% da bacia do rio Tibagi.



Figura 1. Localização da PCH Salto Mauá, em relação ao Rio Tibagi e as cidades de Ortigueira e Telêmaco Borba.

6. OBJETIVOS

Os objetivos do presente Programa de Monitoramento da Avifauna são:

✓ Identificação e caracterização da avifauna das áreas sob influência do reservatório da PCH;

- ✓ Atualização das informações sobre ocorrência de espécies raras, endêmicas e ameaçadas de extinção;
- ✓ Acompanhamento da dinâmica populacional de tais grupos ao longo do tempo, com a finalidade de verificar impactos e propor diretrizes conservacionistas.

6.1. CAMPANHAS AMOSTRAIS

A primeira campanha amostral do presente Programa de Monitoramento ocorreu em julho de 2019, contemplando a estação de seca (inverno). A segunda campanha ocorreu em fevereiro de 2020, contemplando a estação chuvosa (verão). Ambas as campanhas tiveram duração de 3 dias. As campanhas para amostragem da avifauna na PCH Salto Mauá possuem periodicidade semestral e são executadas concomitantemente às campanhas de Monitoramento da Ictiofauna, que já vem sendo executado pela ACQUAPLAN desde 2015.

6.2. METODOLOGIAS DE AMOSTRAGEM E COLETA

As metodologias aplicadas durante as amostragens nas áreas Monitoramento da Avifauna na Pequena Central Hidrelétrica (PCH) Salto Mauá da Klabin Celulose estão descritas a seguir.

Dados Secundários

As Consultas Bibliográficas (BB) têm como alvo principal a revisão de dados da literatura disponíveis em trabalhos realizados na região e, a partir disto, listar as espécies de aves com possível ocorrência nas áreas de influência do empreendimento. Dentre os trabalhos consultados destacam-se Rocha *et al.* (2003), Volpato *et al.* (2009) e Hori (2011), além de registros de ocorrência do site WikiAves (http://www.wikiaves.com.br/). A partir destes dados foi gerada uma lista das aves com provável ocorrência para as áreas de influência da Pequena Central Hidrelétrica (PCH) Salto Mauá da Klabin Celulose S.A.

Foram consultados estudos sobre a avifauna elaborados para o empreendimento e áreas de influência para compor a lista de espécies de provável ocorrência. Destaca-se que a ACQUAPLAN realizou dois Programas de Monitoramento da Avifauna na região de Ortigueira, contemplando quatro anos de levantamentos na Terra Indígena Mococa e Projeto PUMA, com a construção de uma base de dados da fauna.

O grau de ameaça de extinção é baseado na Lista das Espécies da Fauna Brasileira Ameaçadas de Extinção (Portarias MMA nº 444/2014), Lista das Espécies da Fauna Ameaçadas de Extinção no Paraná (MIKICH *et al.*, 2004) e IUCN *Red List of Threatened Species* (2019).

Dados Primários

As campanhas com duração de três dias foram iniciadas todos os dias ao amanhecer (05 h às 11 h) e encerrada ao anoitecer (15 h às 19 h). São esses os horários que as aves se encontram em maior atividade de forrageio e delimitação de território (WUNDERLE, 1994).

A observação da avifauna foi realizada com o auxílio de um binóculo Nikon® 8 X 42, e sempre que possível as espécies foram registradas com uma câmera fotográfica Nikon® P500 (36 x de zoom óptico) e Canon® T3i (lente Canon 100-300 mm), e com um gravador de áudio digital SONY® IC RECORDER – UX200. Os indivíduos foram listados em uma caderneta de campo, para posterior tabelamento em planilha digital, e os locais de observação georreferenciados com um GPS Garmim® Etrex 10 (Figura 2).

A determinação das espécies foi realizada, predominantemente em campo ou, posteriormente com auxílio de guias de identificação (PERLO, 2009 e RIDGELY & TUDOR, 2009) ou guias sonoros (VIELLIARD, 1995a e 1995b; GONZAGA & CASTIGLIONI, 2001 e ISLER & WHITNEY, 2002). Também foram realizadas consultas nos *websites* Xeno-Canto (http://www.xeno-canto.org) e WikiAves (http://www.wikiaves.com.br). A ordem sistemática, nomenclatura e nomes populares seguem a Lista comentada das Aves do Brasil pelo Comitê Brasileiro de Registros Ornitológicos (PIACENTINI *et al.*, 2015).

Figura 2. Material utilizado para visualização, identificação e registro da avifauna presente nas áreas de influência da PCH Salto Mauá.

a) Levantamento Qualitativo: Censo por Transecção

As amostragens qualitativas são realizadas com a intenção de identificar todas as espécies que utilizam a áreas de estudo. Para a obtenção destas informações foram realizadas observações percorrendo-se transectos pré-definidos, onde o ornitólogo realiza o levantamento quali-quantitativo das espécies avistadas (Figura 3).

Todas as espécies ativas avistadas e/ou escutadas foram identificadas no nível de espécie, fotografadas quando possível e registradas em caderneta de campo para posterior tabelamento em planilha eletrônica.

Figura 3. Biólogo realizando a anotação referente a avistagem de aves e gravação da avifauna no levantamento em transectos.

b) Pontos de Contagem com Raio Fixo (Fixed-Radius Point Counts)

Através de levantamentos quantitativos é possível calcular Índices Pontual de Abundância (IPA), Diversidade, Equitabilidade e Frequência Relativa. Para isso, o número de indivíduos de cada espécie identificada é utilizado como descritor analítico. Comparar a composição das comunidades em diferentes locais e, por logos períodos, também é possível com a utilização desses métodos quantitativos. O cálculo do IPA consiste no número total de contatos de uma dada espécie, dividido pelo número total de pontos amostrados em uma determinada área (ALEIXO, 1999).

Para a obtenção de dados quantitativos foi utilizada também uma metodologia descrita por Reynolds et al. (1980) e Wunderle (1994) chamada de Pontos de Contagem com Raio Fixo (Fixed-Radius Point Counts) (Figura 4 A). Essa metodologia, descrita pelos autores supracitados, prediz a identificação da espécie e a contagem de todos os indivíduos ativos, registrados visualmente e/ou acusticamente, dentro de um raio fixo durante um determinado tempo. O raio fixo padrão recomendado é de 25 m de distância do ponto central onde se localiza o observador e o tempo determinado em cada ponto é de 10 minutos (REYNOLDS et al., 1980 e WUNDERLE, 1994).

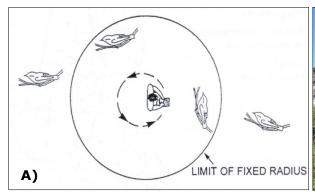


Figura 4. A= Representação esquemática do método de Ponto de Contagem com Raio Fixo (*Fixed-Radius Point Counts*) e B= Observador realizando um dos pontos de contagem em Áreas de Monitoramento.

As coordenadas geográficas dos Pontos de Contagem em Raio Fixo estão apresentadas na Tabela 1 e no mapa na Figura 5. O mesmo mapa também apresenta a representação gráfica dos transectos realizados para avistagem da avifauna nas áreas adjacentes à PCH.

Tabela 1. Coordenadas geográficas dos Pontos de Contagem com Raio Fixo do Programa de Monitoramento da Avifauna na Pequena Central Hidrelétrica (PCH) Salto Mauá da Klabin Celulose S.A.

Ponto	Coordenada (UTM SIRGAS2000/22J)				
	X	Y			
1	529548	7339068			
2	529482	7339175			
3	529511	7339312			
4	529444	7339466			
5	529396	7339573			
6	529758	7339227			
7	529404	7339736			
8	529432	7339921			

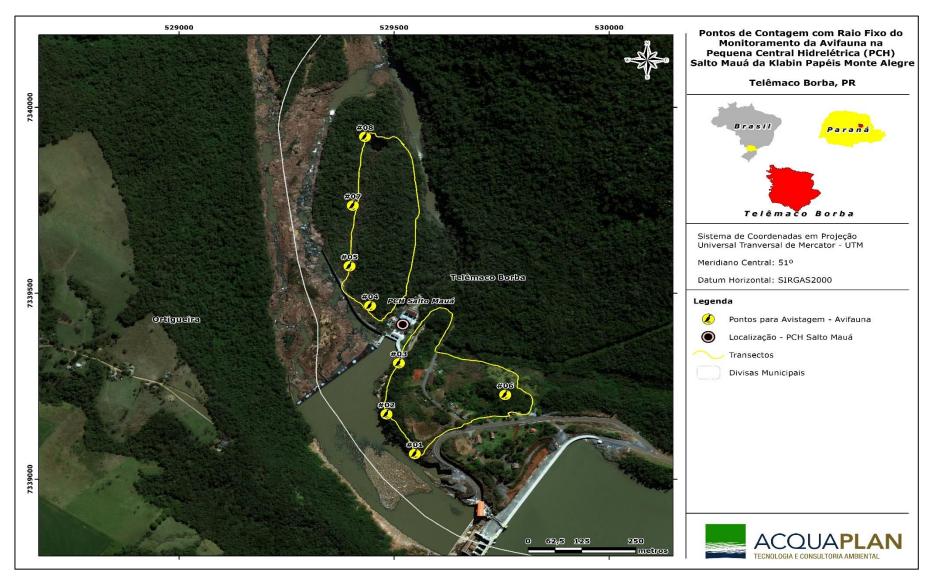


Figura 5. Mapa da área de monitoramento com a representação dos 8 pontos de contagem com raio fixo e transectos do Programa de Monitoramento da Avifauna na Pequena Central Hidrelétrica (PCH) Salto Mauá da Klabin Celulose S.A.

c) Análise de Dados

Com a finalidade de comparar todos os meses de amostragem qualitativas, em relação a proporção de presença das espécies registradas, foi realizado o cálculo de **Constância** (*C*) de cada uma das espécies de aves registradas. Para tal será utilizada a seguinte fórmula citada por Silveira Neto *et al.*, (1976):

$$C = \left(\frac{p}{N}\right) \times 100,$$

Onde, p é o número de campanhas onde a espécie em questão foi registrada e N o número total de campanhas amostrais. Após o cálculo da constância, as espécies foram separadas em espécies constantes (presentes em mais de 50% das campanhas), espécies acessórias (presentes entre 25 e 50% das campanhas) e espécies acidentais (presentes em menos de 25% das campanhas).

Com os dados obtidos pelo levantamento quantitativo, foi possível calcular o **Índice Pontual de Abundância** (*IPA*) e a **Frequência Relativa** (*FR*) de cada espécie contabilizada:

$$IPA = Ci/P$$

Onde *Ci* é o número total de contatos obtidos com a espécie em questão (número de pontos em que a espécie apareceu) e *P* é o número de pontos de contagem realizados na amostragem. Este índice é utilizado a fim de minimizar o efeito de espécies gregárias (espécies que vivem em grandes bandos), mostrando assim a utilização do ambiente como um todo.

$$FR = \left(\frac{Ni}{Nt}\right) \times 100$$

Onde **Ni** é o número de indivíduos da espécie em questão e **Nt** é o número de indivíduos de todas as espécies contabilizadas, identificando as espécies dominantes, raras e intermediárias que ocupam a área de monitoramento.

A fim de comparar áreas amostradas para o presente estudo, foram realizados cálculos de índices de Diversidade, gerados através do *software* PAST versão 2.14 (HAMMER *et al.*, 2001). São eles:

- O **Índice de Shannon**, dá um maior peso para as espécies raras (MAGURRAN, 1988), quanto maior for o valor de H', maior será a Diversidade da população em estudo. Este índice pode expressar Riqueza e Uniformidade. Este índice é obtido pela equação:

$$H' = -\sum_{i=1}^{S} Pi \ln pi$$

Onde S é o número de espécies, pi é a proporção da espécie i, estimada como ni/N, onde ni é a medida de importância da espécie i (número de indivíduos, biomassa), e N é o número total de indivíduos. Na prática o valor máximo de H' é ln S, e o mínimo é ln [N] (N - S)].

- O **Índice de Simpson**, pertence ao grupo das medidas de Dominância, uma vez que dá mais peso para as espécies mais comuns. Ele mede a probabilidade de dois indivíduos, selecionados ao acaso na amostra, pertencer à mesma espécie (BROWER & ZARR, 1984). O valor estimado de Simpson varia de 0 (zero) a 1 (um), sendo que para valores próximos de um, a Diversidade é considerada maior. Este índice é obtido pela equação abaixo:

$$D = \sum_{i=1}^{S} pi^2$$

Onde *pi* é a proporção da espécie *i* na comunidade, e *S* é o número de espécies.

- O índice de **Equitabilidade de Pielou (J')** pertence ao intervalo [0,1], onde 1 representa a máxima Diversidade, ou seja, todas as espécies são igualmente abundantes (Ludwig & Reynolds, 1988).
- Alguns índices simples são utilizados como medidas de Riqueza de espécies, incluindo o índice de **Margalef** (D_{Mg}) e o de **Menhinick** (D_{Mn}). Estes índices combinam o número de espécies registrado (S) com o número total de indivíduos (N), sendo que quando Margalef apresentar valores maiores do que 5, considera-se a população com alta Diversidade.

$$D_{Mg} = \frac{(S-1)}{lnN}$$
$$D_{Mn} = \frac{S}{\sqrt{N}}$$

- **Perfil de Diversidade de Rènny**: Embora aparentemente totalmente diferentes, os valores de Riqueza de espécies, Índice de Shannon (H´) e Índice de Simpson diferem

basicamente no peso em que se dá para espécies raras. No caso de Riqueza de espécies, o peso é máximo: espécies raras possuem o mesmo peso de espécies comuns. No caso do Índice de Shannon, o peso é intermediário. No caso do Índice de Simpson, o peso de espécies raras é pequeno. É possível generalizar esta ideia usando Perfis de Diversidade (*Diversity Profiles*) (MELO, 2008). Uma das primeiras generalizações é a Série de Rényi, dada por:

$$H_{\alpha} = (ln(P1^{\alpha} + P2^{\alpha} \dots + Ps^{\alpha}))/(1 - \alpha)$$

Onde, $H\alpha$ é o valor do índice de Diversidade para o parâmetro α ($\alpha \geq 0$, $\alpha \neq 1$) e p1, p2, ..., pn são proporções de indivíduos das espécies 1, 2, ... S. Quando α =0, N_0 =número de espécies, ou seja, da maior importância ao parâmetro Riqueza e quando α tende ao infinito da maior importância ao parâmetro Equabilidade. Assim, é possível calcular índices de Diversidade para $\alpha = 0, 1, 2, 3, ...$ Eles funcionam de maneira muito semelhante aos Índices de Shannon e Simpson. Quando há sobreposição das curvas, a interpretação de qual comunidade é mais diversa depende de qual índice é levado em consideração. Visto a ausência de um critério que tornasse esta decisão objetiva, Tóthmérész (1995) sugere que as duas comunidades são não-comparáveis, ou não-separáveis segundo Liu *et al.* (2007). Conforme as abundâncias entre as espécies vão sendo alteradas de modo a haver menor Equabilidade, a curva tenderá a ficar mais inclinada (ou seja, com valores mais variados) (Hill, 1973).

Para verificar a suficiência amostral obtida nas áreas analisadas/monitoradas, foi aplicada a análise estatística de "Curva de Rarefação Individual", descrita por Krebs (1989). Este método utiliza uma matriz de presença e ausência das espécies registradas nas amostragens quantitativas. O número de espécies registradas é influenciado pelo número de indivíduos encontrados e número de amostras realizadas. De acordo com Goetelli & Colwell (2001), para minimizar este problema, é interessante ilustrar o aumento do número de espécies através de uma curva de rarefação. De forma simplificada, a Curva de Rarefação é produzida por repetidas re-amostragens ao acaso.

7. RESULTADOS

7.1. Análise qualitativa

Durante as campanhas realizadas no Programa de Monitoramento da Avifauna na PCH Salto Mauá foram registradas 87 espécies de aves, referente aos meses de julho de 2019 (Campanha 1) e fevereiro de 2020 (Campanha 2). Este resultado representa 20% do total de espécies levantadas para a região de estudo, conforme dados secundários – 443 espécies de provável ocorrência (Figura 6). A Tabela 2 apresenta as espécies de provável ocorrência para a região de estudo, bem como as espécies registradas neste período do monitoramento qualitativo realizado durante os monitoramentos da Acquaplan na região, no monitoramento na Terra Indígena Mococa (2017), no projeto PUMA (2013 a 2017) e no monitoramento atual (julho/2019, fevereiro 2020).

Das 87 espécies da avifauna registradas no presente monitoramento, nenhuma apresenta algum grau de ameaça de extinção até o momento.

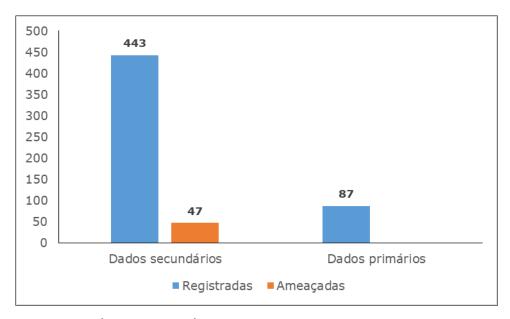


Figura 6. Número de espécies registradas nos levantamentos de dados secundários e primários durante o Programa de Monitoramento da Avifauna na Pequena Central Hidrelétrica Salto Mauá.

Tabela 2. Espécies da avifauna de provável ocorrência e registradas no Monitoramento da Avifauna na Pequena Central Hidrelétrica (PCH) Salto Mauá da Klabin Celulose S.A., conforme a literatura consultada e registros realizados durante as campanhas realizadas nos monitoramentos pretéritos (Terra Indígena Mococa – 2017, Projeto PUMA – 2013 a 2017) e campanhas atuais (julho/2019; fevereiro/2020). São apresentados os nomes dos táxons, nome comum, tipo de registro e status de conservação de cada espécie.

Táxon	Nome comum	Registro	Status de Conservação	ACQUAPLAN TERRA INDIGENA MOCOCA – 2017	ACQUAPLAN PROJETO PUMA - 2017	ACQUAPLAN PCH SALTO MAUÁ - 2019 - 2020
Tinamiformes Huxley, 1872 Tinamidae Gray, 1840						
Tinamus solitarius (Vieillot, 1819) Crypturellus obsoletus (Temminck,	macuco	ВВ	NT (IUCN)	X	x	
1815)	inhambuguaçu	BB; V; A	LC	Α	^	
Crypturellus noctivagus (Wied, 1820)	jaó-do-sul	BB	NT (IUCN); VU (MMA)			
Crypturellus parvirostris (Wagler, 1827)	inhambu-chororó	BB; V; A	LC	X	X	
Crypturellus tautapa Rhynchotus rufescens (Temminck,	inhambu-chintã	BB; V; A	LC	X	X	
1815)	perdiz	BB; V; A	LC		X	
Nothura maculosa (Temminck, 1815)	codorna-amarela	BB; V; A	LC		X	
Anseriformes Linnaeus, 1758 Anatidae Leach, 1820						
Dendrocygna viduata (Linnaeus, 1766)	irerê	ВВ	LC			
Cairina moschata (Linnaeus, 1758)	pato-do-mato	BB; V; A	LC		X	
Amazonetta brasiliensis (Gmelin, 1789)	ananaí	BB; V; A	LC		X	
Galliformes Linnaeus, 1758 Cracidae Rafinesque, 1815						
Penelope superciliaris Temminck, 1815	jacupemba	ВВ	CR (MMA)			
Penelope obscura Temminck, 1815	jacuguaçu	BB; V; A	LC	X	X	X
Aburria jacutinga (Spix, 1825)	jacutinga	BB	EN (MMA)			
Ortalis squamata (Lesson, 1829)	aracuã-escamoso	ВВ	LC			
Ortalis guttata (Spix, 1825)	aracuã-pintado	ВВ	LC			
Odontophoridae Gould, 1844	·					

Táxon	Nome comum	Registro	Status de Conservação	ACQUAPLAN TERRA INDIGENA MOCOCA – 2017	ACQUAPLAN PROJETO PUMA - 2017	ACQUAPLAN PCH SALTO MAUÁ - 2019 - 2020
Odontophorus capueira (Spix, 1825)	uru	BB; V; A	LC	X	X	
Procellariiformes Fürbringer, 1888 Procellariidae Leach, 1820						
Puffinus puffinus (Brünnich, 1764)	pardela-sombria	BB	LC			
Suliformes Sharpe, 1891 Fregatidae Degland & Gerbe, 1867						
Fregata magnificens Mathews, 1914	tesourão	BB	LC			
Sulidae Reichenbach, 1849						
Sula leucogaster (Boddaert, 1783)	atobá	BB	LC			
Phalacrocoracidae Reichenbach, 1849						
Nannopterum brasilianus (Gmelin, 1789)	biguá	ВВ	LC	x	X	X
Anhingidae Reichenbach, 1849						
Anhinga anhinga (Linnaeus, 1766)	biguatinga	BB	LC			
Pelecaniformes Sharpe, 1891 Ardeidae Leach, 1820						
Tigrisoma lineatum (Boddaert, 1783) Cochlearius cochlearius (Linnaeus,	socó-boi	BB; V; A	LC	x		
1766)	arapapá	BB	LC			
Nycticorax nycticorax (Linnaeus, 1758)	socó-dorminhoco	BB; V; A	LC		X	X
Nyctanassa violacea (Linnaeus, 1758)	savacu-de-coroa	BB	LC			
Butorides striata (Linnaeus, 1758)	socozinho	BB	LC			
Bubulcus ibis (Linnaeus, 1758)	garça-vaqueira	BB; V; A	LC	X	X	
Ardea cocoi Linnaeus, 1766	garça-moura	BB; V; A	LC		X	X
Ardea alba Linnaeus, 1758	garça-branca	BB; V; A	LC		X	X
Syrigma sibilatrix (Temminck, 1824)	maria-faceira	BB; V; A	LC		X	
Egretta thula (Molina, 1782)	garça-branca-pequena	BB; V; A	LC		X	X

Táxon	Nome comum	Registro	Status de Conservação	ACQUAPLAN TERRA INDIGENA MOCOCA – 2017	ACQUAPLAN PROJETO PUMA - 2017	ACQUAPLAN PCH SALTO MAUÁ - 2019 - 2020
Egretta caerulea (Linnaeus, 1758)	garça-azul	BB	LC			X
Threskiornithidae Poche, 1904						
Phimosus infuscatus (Lichtenstein, 1823)	tapicuru	ВВ	LC			
Theristicus caudatus (Boddaert, 1783)	curicaca	BB; V; A	LC	X	X	
Platalea ajaja Linnaeus, 1758	colhereiro	BB	LC			
Mesembrinibis cayennensis	coró-coró	BB; V; A	LC	X	X	
Cathartiformes Seebohm, 1890						
Cathartes aura (Linnaeus, 1758)	urubu-de-cabeça- vermelha urubu-de-cabeça-	BB; V; A	LC	X	X	x
Cathartes burrovianus Cassin, 1845	amarela	ВВ	LC			
Coragyps atratus (Bechstein, 1793)	urubu	BB; V; A	LC	X	X	X
Sarcoramphus papa (Linnaeus, 1758)	urubu-rei	BB	LC			
Accipitriformes Bonaparte, 1831 Pandionidae Bonaparte, 1854						
Pandion haliaetus (Linnaeus, 1758)	águia-pescadora	BB	LC			
Accipitridae Vigors, 1824						
Morphnus guianensis (Daudin, 1800)	uiraçu	BB	NT (IUCN)			
Leptodon cayanensis (Latham, 1790)	gavião-gato	BB; V; A	LC	X	X	
Elanoides forficatus (Linnaeus, 1758)	gavião-tesoura	BB; V; A	LC	X	X	
Elanus leucurus (Vieillot, 1818)	gavião-peneira	BB; V; A	LC	X	X	
Harpagus diodon (Temminck, 1823)	gavião-bombachinha	ВВ	LC			
Harpia harpyja (Linnaeus, 1758)	gavião-real	ВВ	NT (IUCN)			
Accipiter poliogaster (Temminck, 1824)	tauató-pintado	BB; V; A	NT (IUCN)		X	
Accipiter superciliosus (Linnaeus, 1766)	tauató-passarinho	ВВ	LC			
Accipiter striatus Vieillot, 1808	tauató-miúdo	BB; V; A	LC	X		
Accipiter bicolor (Vieillot, 1817)	gavião-bombachinha- grande	ВВ	LC			

Táxon	Nome comum	Registro	Status de Conservação	ACQUAPLAN TERRA INDIGENA MOCOCA – 2017	ACQUAPLAN PROJETO PUMA - 2017	ACQUAPLAN PCH SALTO MAUÁ - 2019 - 2020
Ictinia plumbea (Gmelin, 1788)	sovi	BB; V; A	LC	X	X	
Geranospiza caerulescens (Vieillot, 1817) Heterospizias meridionalis (Latham,	gavião-pernilongo	BB; V; A	LC		X	
1790) Amadonastur lacernulatus (Temminck,	gavião-caboclo gavião-pombo-	BB; V; A	LC		X	
1827)	pequeno	BB	VU (MMA)			
Urubitinga urubitinga (Gmelin, 1788)	gavião-preto	BB	LC			
Rupornis magnirostris (Gmelin, 1788) Parabuteo leucorrhous (Quoy &	gavião-carijó gavião-de-sobre-	BB; V; A	LC	X	X	X
Gaimard, 1824)	branco	BB	LC			
Pseudastur polionotus (Kaup, 1847)	gavião-pombo	BB	NT (IUCN)			
Buteo brachyurus Vieillot, 1816	gavião-de-cauda-curta	BB; V; A	LC	X	X	
<i>Geranoaetus albicaudatus</i> (Vieillot, 1816)	águia-serrana	ВВ	LC			
Spizaetus ornatus (Daudin, 1800)	gavião-de-penacho	BB	NT (IUCN)		X	
Spizaetus tyrannus (Wied, 1820)	gavião-pega-macaco	BB; V; A	LC		X	
Spizaetus melanoleucus (Vieillot, 1816)	gavião-pato	BB	LC			
Gruiformes Bonaparte, 1854						
Aramidae Bonaparte, 1852						
Aramus guarauna (Linnaeus, 1766)	carão	BB	LC			
Rallidae Rafinesque, 1815						
Rallus longirostris Boddaert, 1783 Aramides cajaneus (Statius Muller,	saracura-matraca	ВВ	LC			
1776)	saracura-três-potes	BB	LC			
Aramides saracura (Spix, 1825)	saracura-do-mato	BB; V; A	LC	X	X	X
Laterallus melanophaius (Vieillot, 1819)	sanã-parda	BB	LC			
Laterallus exilis (Temminck, 1831)	sanã-do-capim	BB	LC			
Mustelirallus albicollis (Vieillot, 1819)	sanã-carijó	BB	LC			
Pardirallus nigricans (Vieillot, 1819)	saracura-sanã	BB; V; A	LC	x		

Táxon	Nome comum	Registro	Status de Conservação	ACQUAPLAN TERRA INDIGENA MOCOCA – 2017	ACQUAPLAN PROJETO PUMA - 2017	ACQUAPLAN PCH SALTO MAUÁ - 2019 - 2020
Pardirallus sanguinolentus (Swainson,	annauma da banbada	BB	LC			
1838) Gallinula galeata (Lichtenstein, 1818)	saracura-do-banhado			X	x	
<u> </u>	galinha-d'água carqueja-de-bico-	BB; V; A	LC	^	^	
Fulica armillata Vieillot, 1817	manchado	BB	LC			
Charadriiformes Huxley, 1867						
Charadriidae Leach, 1820						
Vanellus chilensis (Molina, 1782)	quero-quero	BB; V; A	LC	X	X	X
Charadrius semipalmatus Bonaparte,						
1825	batuíra-de-bando	BB	LC			
Charadrius collaris Vieillot, 1818	batuíra-de-coleira	BB	LC			
Recurvirostridae Bonaparte, 1831						
Himantopus melanurus Vieillot, 1817	pernilongo-de-costas- brancas	BB	LC			
Scolopacidae Rafinesque, 1815						
Gallinago paraguaiae (Vieillot, 1816)	narceja	BB; V; A	LC		X	
Limosa haemastica (Linnaeus, 1758)	maçarico-de-bico- virado	BB	LC			
Actitis macularius (Linnaeus, 1766)	maçarico-pintado	BB	LC			
Tringa solitaria Wilson, 1813	maçarico-solitário	BB	LC			
Calidris fuscicollis (Vieillot, 1819)	maçarico-de-sobre-					
	branco	BB	LC			
Jacanidae Chenu & Des Murs, 1854						
Jacana jacana (Linnaeus, 1766)	jaçanã	BB; V; A	LC		X	
Stercorariidae Gray, 1870						
Laridae Rafinesque, 1815						
Chroicocephalus maculipennis (Lichtenstein, 1823)	gaivota-maria-velha	ВВ	LC			
Larus dominicanus Lichtenstein, 1823	gaivotão	ВВ	LC			X
Sternidae Vigors, 1825						

Táxon	Nome comum	Registro	Status de Conservação	ACQUAPLAN TERRA INDIGENA MOCOCA – 2017	ACQUAPLAN PROJETO PUMA - 2017	ACQUAPLAN PCH SALTO MAUÁ - 2019 - 2020
Sterna hirundinacea Lesson, 1831	trinta-réis-de-bico- vermelho	BB	VU (MMA)			
Thalasseus acuflavidus (Cabot, 1847)	trinta-réis-de-bando	ВВ	LC			
Rynchopidae Bonaparte, 1838						
Rynchops niger Linnaeus, 1758	talha-mar	ВВ	LC			
Columbiformes Latham, 1790 Columbidae Leach, 1820						
Columbina talpacoti (Temminck, 1810)	rolinha	BB; V; A	LC	X	X	X
Columbina passerina (Linnaeus, 1758)	rolinha-cinzenta	ВВ	LC			
Columbina squamata	fogo-apagou	BB; V; A	LC	X	X	X
Columbina picui (Temminck, 1813)	rolinha-picuí	BB; V; A	LC	X		
Claravis pretiosa	pararu-azul	BB; V; A	LC	X	X	
Columba livia Gmelin, 1789	pombo-doméstico	BB; V; A	LC		X	
Patagioenas picazuro (Temminck, 1813) Patagioenas cayennensis (Bonnaterre,	asa-branca	BB; V; A	LC	X	X	X
1792)	pomba-galega	BB; V; A	LC	X	X	
Patagioenas plumbea (Vieillot, 1818)	pomba-amargosa	ВВ	LC			X
Zenaida auriculata (Des Murs, 1847)	avoante	BB; V; A	LC	X	X	X
Leptotila verreauxi Bonaparte, 1855 Leptotila rufaxilla (Richard & Bernard,	juriti-pupu	BB; V; A	LC	X	X	X
1792)	juriti-de-testa-branca	BB; V; A	LC	X	X	
Geotrygon montana (Linnaeus, 1758)	pariri	BB; V; A	LC		X	
Cuculiformes Wagler, 1830 Cuculidae Leach, 1820						
Piaya cayana (Linnaeus, 1766)	alma-de-gato	BB; V; A	LC	X	X	X
Coccyzus melacoryphus Vieillot, 1817	papa-lagarta	BB; V; A	LC	X	X	
Crotophaga ani Linnaeus, 1758	anu-preto	BB; V; A	LC	X	X	X
Guira guira (Gmelin, 1788)	anu-branco	BB; V; A	LC	x	X	X

Táxon	Nome comum	Registro	Status de Conservação	ACQUAPLAN TERRA INDIGENA MOCOCA – 2017	PROJETO PUMA - 2017	ACQUAPLAN PCH SALTO MAUÁ - 2019 - 2020
Tapera naevia (Linnaeus, 1766)	saci	BB; V; A	LC	X	X	
Dromococcyx pavoninus Pelzeln, 1870	peixe-frito-pavonino	BB; V; A	LC	X	Х	
Strigiformes Wagler, 1830 Tytonidae Mathews, 1912						
Tyto furcata (Temminck, 1827)	suindara	BB; V; A	LC	X	X	
Strigidae Leach, 1820						
Megascops choliba (Vieillot, 1817)	corujinha-do-mato	BB; V; A	LC	X	X	
Megascops atricapilla (Temminck, 1822)	corujinha-sapo	ВВ	LC			
Megascops sanctaecatarinae (Salvin, 1897)	corujinha-do-sul murucututu-de-	BB; V; A	LC		X	
Pulsatrix koeniswaldiana	barriga-amarela	BB; V; A	LC		X	
Pulsatrix perspicillata (Latham, 1790)	murucututu	BB	LC			
Strix hylophila Temminck, 1825	coruja-listrada	BB; V; A	NT (IUCN)		X	
Strix virgata (Cassin, 1849)	coruja-do-mato	BB; V; A	LC	X		
Athene cunicularia (Molina, 1782)	coruja-buraqueira	BB; V; A	LC	X	X	X
Glaucidium brasilianum	caburé	BB; V; A	LC	X	X	
Asio stygius (Wagler, 1832)	mocho-diabo	ВВ	LC			
Nyctibiiformes Yuri et al. 2013 Nyctibiidae Chenu & Des Murs, 1851						
Nyctibius griseus (Gmelin, 1789)	urutau	BB; V; A	LC	X	X	
Caprimulgiformes Ridgway, 1881 Caprimulgidae Vigors, 1825						
Lurocalis semitorquatus (Gmelin, 1789)	tuju	BB; V; A	LC		X	
Nyctidromus albicollis (Gmelin, 1789)	bacurau	BB; V; A	LC	X	X	X
Hydropsalis torquata (Gmelin, 1789)	bacurau-tesoura	BB; V; A	LC		X	
Hydropsalis forcipata (Nitzsch, 1840)	bacurau-tesourão	BB; V; A	LC	X	X	
Hydropsalis parvula	bacurau-chintã	BB; V; A	LC	x	X	

Táxon	Nome comum	Registro	Status de Conservação	ACQUAPLAN TERRA INDIGENA MOCOCA – 2017	ACQUAPLAN PROJETO PUMA - 2017	ACQUAPLAN PCH SALTO MAUÁ - 2019 - 2020
Podager nacunda (Vieillot, 1817)	corucão	ВВ	LC			
Apodiformes Peters, 1940						
Apodidae Olphe-Galliard, 1887						
Cypseloides fumigatus (Streubel, 1848)	taperuçu-preto	ВВ	LC			
Cypseloides senex (Temminck, 1826)	taperuçu-velho	ВВ	LC			
Streptoprocne zonaris (Shaw, 1796)	taperuçu-de-coleira- branca	BB; V; A	LC		X	
Chaetura cinereiventris Sclater, 1862	andorinhão-de-sobre- cinzento andorinhão-do-	BB; V; A	LC		X	
Chaetura meridionalis Hellmayr, 1907	temporal	BB; V; A	LC	X	X	
Panyptila cayennensis (Gmelin, 1789)	andorinhão-estofador	ВВ	LC			
Trochilidae Vigors, 1825						
Ramphodon naevius (Dumont, 1818) Phaethornis squalidus (Temminck,	beija-flor-rajado	ВВ	NT (IUCN)			
1822)	rabo-branco-pequeno	BB	LC			
Phaethornis eurynome (Lesson, 1832)	rabo-branco-de- garganta-rajada	BB; V; A	LC	x	X	
Eupetomena macroura (Gmelin, 1788)	beija-flor-tesoura	BB; V; A	LC			X
Aphantochroa cirrochloris (Vieillot, 1818)	beija-flor-cinza	ВВ	LC			
Florisuga fusca (Vieillot, 1817)	beija-flor-preto	BB; V; A	LC	X	x	X
Anthracothorax nigricollis (Vieillot,	beija-flor-de-veste-					
1817)	preta	BB	LC			
Lophornis chalybeus (Temminck, 1821)	topetinho-verde	BB	NT (IUCN)			
Chlorostilbon lucidus (Shaw, 1812)	besourinho-de-bico- vermelho	BB; V; A	LC	x	X	
Thalurania glaucopis (Gmelin, 1788)	beija-flor-de-fronte- violeta	BB; V; A	LC	x	X	X
Stephanoxi loddigesi	beija-flor-de-topete- azul	BB; V; A	LC	X		

Táxon	Nome comum	Registro	Status de Conservação	ACQUAPLAN TERRA INDIGENA MOCOCA – 2017	ACQUAPLAN PROJETO PUMA - 2017	ACQUAPLAN PCH SALTO MAUÁ - 2019 - 2020
Leucochloris albicollis (Vieillot, 1818)	beija-flor-de-papo- branco	BB; V; A	LC	x	X	
Amazilia versicolor (Vieillot, 1818)	beija-flor-de-banda- branca	BB; V; A	LC		X	
Amazilia fimbriata (Gmelin, 1788)	beija-flor-de-garganta- verde	BB; V; A	LC	x	X	
Amazilia lactea	beija-flor-de-peito-azul	BB; V; A	LC	X	X	
Heliodoxa rubricauda (Boddaert, 1783)	beija-flor-rubi	BB	LC			
Glaucis hirsutus (Gmelin, 1788)	balança-rabo-de-bico- torto	ВВ	LC			
Trogoniformes A. O. U., 1886 Trogonidae Lesson, 1828						
Trogon viridis Linnaeus, 1766	surucuá-de-barriga- amarela	BB	LC			X
Trogon surrucura Vieillot, 1817	surucuá-variado	BB; V; A	LC	X	X	X
Trogon rufus Gmelin, 1788	surucuá-dourado	BB; V; A	LC	X		X
Coraciiformes Forbes, 1844 Alcedinidae Rafinesque, 1815						
Megaceryle torquata (Linnaeus, 1766)	martim-pescador- grande	BB; V; A	LC	X	X	X
Chloroceryle amazona (Latham, 1790)	martim-pescador- verde	BB; V; A	LC	x	X	
Chloroceryle aenea (Pallas, 1764)	martim-pescador- miúdo	BB; V; A	LC		X	
Chloroceryle americana (Gmelin, 1788)	martim-pescador- pequeno	BB; V; A	LC	x	X	
Chloroceryle inda (Linnaeus, 1766)	martim-pescador-da- mata	ВВ	LC			
Momotidae Gray, 1840						
Baryphthengus ruficapillus (Vieillot, 1818)	juruva	BB; V; A	LC		x	
Galbuliformes Fürbringer, 1888						

Táxon	Nome comum	Registro	Status de Conservação	ACQUAPLAN TERRA INDIGENA MOCOCA – 2017	ACQUAPLAN PROJETO PUMA - 2017	ACQUAPLAN PCH SALTO MAUÁ - 2019 - 2020
Notharchus swainsoni (Gray, 1846)	macuru-de-barriga- castanha	ВВ	LC			
Malacoptila striata (Spix, 1824)	barbudo-rajado	BB; V; A	NT (IUCN)	X	x	
Nonnula rubecula (Spix, 1824)	macuru	BB; V; A	LC	X	X	
Piciformes Meyer & Wolf, 1810 Ramphastidae Vigors, 1825						
Ramphastos vitellinus Lichtenstein, 1823	tucano-de-bico-preto	ВВ	VU (IUCN)			
Ramphastos dicolorus Linnaeus, 1766 Selenidera maculirostris (Lichtenstein,	tucano-de-bico-verde	BB; V; A	LC	X	x x	X
1823)	araçari-poca	BB; V; A	LC		~	
Pteroglossus castinotis Gould, 1834	araçari-castanho	BB	LC			
Pteroglossus bailloni (Vieillot, 1819)	araçari-banana	BB; V; A	NT (IUCN)		X	
Pteroglossus aracari (Linnaeus, 1758) Aulacorhyncus whitelianus (Salvin &	araçari-de-bico-branco	BB	LC			
Goldman, 1882)	tucaninho-verde	BB	LC			
Picidae Leach, 1820						
Picumnus cirratus Temminck, 1825	picapauzinho-barrado	BB	LC			
Picumnus temminckii Lafresnaye, 1845	picapauzinho-de- coleira	BB; V; A	LC	X	X	X
Picumnus nebulosus Sundevall, 1866	picapauzinho-carijó	BB	NT (IUCN)			
Melanerpes candidus (Otto, 1796)	pica-pau-branco	BB; V; A	LC	X	X	
Melanerpes flavifrons (Vieillot, 1818)	benedito-de-testa- amarela	BB; V; A	LC		X	
Veniliornis spilogaster (Wagler, 1827)	picapauzinho-verde- carijó	BB; V; A	LC	X	X	X
Piculus flavigula (Boddaert, 1783)	pica-pau-bufador	ВВ	LC			
Piculus aurulentus (Temminck, 1821)	pica-pau-dourado	BB; V; A	NT (IUCN)	X	X	
Colaptes melanochloros (Gmelin, 1788)	pica-pau-verde- barrado	BB; V; A	LC	x	x	
Colaptes campestris (Vieillot, 1818)	pica-pau-do-campo	BB; V; A	LC	X	X	

Táxon	Nome comum	Registro	Status de Conservação	ACQUAPLAN TERRA INDIGENA MOCOCA – 2017	ACQUAPLAN PROJETO PUMA - 2017	ACQUAPLAN PCH SALTO MAUÁ - 2019 - 2020
Celeus galeatus (Temminck, 1822)	pica-pau-de-cara- canela	BB; V; A	VU (IUCN)	X		
Celeus flavescens (Gmelin, 1788)	pica-pau-de-cabeça- amarela	BB; V; A	LC	x	X	
Dryocopus lineatus (Linnaeus, 1766)	pica-pau-de-banda- branca	BB; V; A	LC	x	X	
Campephilus robustus (Lichtenstein, 1818)	pica-pau-rei	BB; V; A	LC		X	X
Falconiformes Bonaparte, 1831 Falconidae Leach, 1820						
Caracara plancus (Miller, 1777)	carcará	BB; V; A	LC	X	X	X
Milvago chimachima (Vieillot, 1816)	carrapateiro	BB; V; A	LC	X	X	X
Milvago chimango (Vieillot, 1816)	chimango	ВВ	LC			
Herpetotheres cachinnans (Linnaeus, 1758)	acauã	BB; V; A	LC		X	
Micrastur ruficollis (Vieillot, 1817)	falcão-caburé	BB; V; A	LC	X	X	
Micrastur semitorquatus (Vieillot, 1817)	falcão-relógio	BB; V; A	LC	X	X	
Falco sparverius Linnaeus, 1758	quiriquiri	BB; V; A	LC	X	X	
Falco femoralis Temminck, 1822	falcão-de-coleira	BB	LC			
Psittaciformes Wagler, 1830 Psittacidae Rafinesque, 1815						
Pyrrhura frontalis (Vieillot, 1817)	tiriba	BB; V; A	LC	X	X	X
Psittacara leucophthalmus	periquitão-maracanã	BB; V; A	LC	X	X	X
Aratinga auricapillus	jandaia-de-testa- vermelha	BB; V; A	LC	x		
Forpus xanthopterygius (Spix, 1824)	tuim	BB; V; A	LC	X	X	X
Brotogeris tirica (Gmelin, 1788)	periquito-verde	BB; V; A	LC			X
Pionopsitta pileata	cuiú-cuiú	BB; V; A	LC	X	X	
Pionus maximiliani (Kuhl, 1820)	maitaca	BB; V; A	LC	X	X	
Amazona brasiliensis (Linnaeus, 1758)	papagaio-de-cara-roxa	ВВ	VU (IUCN)			

Táxon	Nome comum	Registro	Status de Conservação	ACQUAPLAN TERRA INDIGENA MOCOCA – 2017	ACQUAPLAN PROJETO PUMA - 2017	ACQUAPLAN PCH SALTO MAUÁ - 2019 - 2020
Amazona vinacea	papagaio-de-peito- roxo	BB; V; A	EN(IUCN)		X	
Triclaria malachitacea (Spix, 1824)	sabiá-cica	BB	NT (IUCN)			
Passeriformes Linnaeus, 1758	Sabia Cica		W (ISCN)			
Thamnophilidae Swainson, 1824						
Terenura maculata (Wied, 1831) Myrmotherula unicolor (Ménétriès,	zidedê	ВВ	LC			
1835) Formicivora acutirostris (Bornschein,	choquinha-cinzenta	ВВ	NT (IUCN)			
Reinert & Teixeira, 1995)	bicudinho-do-brejo choquinha-de-	ВВ	EN (IUCN)			
Rhopias gularis (Spix, 1825)	garganta-pintada	BB	LC			
Dysithamnus stictothorax (Temminck, 1823) Dysithamnus mentalis (Temminck,	choquinha-de-peito- pintado	ВВ	NT (IUCN)			
1823) Herpsilochmus rufimarginatus	choquinha-lisa chorozinho-de-asa-	BB; V; A	LC	X	X	
(Temminck, 1822)	vermelha	ВВ	LC			
Thamnophilus ruficapillus Vieillot, 1816	choca-de-chapéu- vermelho	BB; V; A	LC	x	X	X
Thamnophilus caerulescens Vieillot, 1816	choca-da-mata	BB; V; A	LC	x	X	X
Hypoedaleus guttatus (Vieillot, 1816)	chocão-carijó	BB	LC			
Batara cinerea (Vieillot, 1819)	matracão	BB; V; A	LC	X	X	
Mackenziaena leachii (Such, 1825) Mackenziaena severa (Lichtenstein,	borralhara-assobiadora	BB; V; A	LC	X		
1823)	borralhara	BB; V; A	LC	X	X	
Myrmoderus squamosus (Pelzeln, 1868) Myrmeciza loricatus (Lichtenstein,	papa-formiga-de-grota	ВВ	LC			
1823)	formigueiro-assobiador	BB	LC			
Biatas nigropectus	papo-branco	BB; V; A	VU (IUCN)	X		
Pyriglena leucoptera (Vieillot, 1818)	papa-taoca-do-sul	BB; V; A	LC	X	X	X

Táxon	Nome comum	Registro	Status de Conservação	ACQUAPLAN TERRA INDIGENA MOCOCA – 2017	ACQUAPLAN PROJETO PUMA - 2017	ACQUAPLAN PCH SALTO MAUÁ - 2019 - 2020
Drymophila malura	choquinha-carijó	BB; V; A	LC	X	X	
Drymophila rubricollis	trovoada-de-bertoni	BB; V; A	LC	X	X	
Drymophila ferruginea (Temminck, 1822)	trovoada	BB; V; A	LC		X	
Drymophila ochropyga (Hellmayr, 1906)	choquinha-de-dorso- vermelho	BB	NT (IUCN)			
Drymophila squamata (Lichtenstein, 1823)	pintadinho	ВВ	LC			
Conopophagidae Sclater & Salvin, 1873						
Conopophaga lineata (Wied, 1831)	chupa-dente	BB; V; A	LC	X	X	
Conopophaga melanops (Vieillot, 1818)	cuspidor-de-máscara- oreta	ВВ	VU (MMA)			
Grallariidae Sclater & Salvin, 1873						
Hylopezus nattereri (Pinto, 1937)	pinto-do-mato	BB	LC			
Grallaria varia	tovacuçu	BB; V; A	LC	X	X	
Rhinocryptidae Wetmore, 1926 (1837)						
Eleoscytalopus indigoticus (Wied, 1831)	macuquinho	BB; V; A	NT (IUCN)	X	X	
Psilorhamphus guttatus (Ménétriès, 1835)	tapaculo-pintado	BB; V; A	NT (IUCN)	x	X	
Formicariidae Gray, 1840						
Formicarius colma Boddaert, 1783	galinha-do-mato	BB; V; A	LC		X	
Chamaeza campanisona (Lichtenstein, 1823)	tovaca-campainha	BB; V; A	LC	x	X	
Scleruridae Swainson, 1827						
Sclerurus scansor (Ménétriès, 1835)	vira-folha	BB; V; A	LC	X	X	
Geositta cunicularia (Vieillot, 1816)	curriqueiro	ВВ	LC			
Dendrocolaptidae Gray, 1840						
Dendrocincla turdina (Lichtenstein, 1820)	arapaçu-liso	ВВ	LC			

Táxon	Nome comum	Registro	Status de Conservação	ACQUAPLAN TERRA INDIGENA MOCOCA – 2017	ACQUAPLAN PROJETO PUMA - 2017	ACQUAPLAN PCH SALTO MAUÁ - 2019 - 2020
Sittasomus griseicapillus (Vieillot, 1818)	arapaçu-verde	BB; V; A	LC	X	X	
Xiphorhynchus fuscus (Vieillot, 1818)	arapaçu-rajado	BB; V; A	LC	X	X	
Lepidocolaptes falcinellus (Cabanis & Heine, 1859) Lepidocolaptes squamata (Lichtenstein,	arapaçu-escamoso-do- sul	ВВ	LC			
1822)	arapaçu-escamado	BB	LC	V	X	
Campylorhamphus falcularius	arapaçu-de-bico-torto	BB; V; A	LC	X		
Dendrocolaptes platyrostris Spix, 1825	arapaçu-grande	BB; V; A	LC	X	X	
Xiphocolaptes albicollis (Vieillot, 1818)	arapaçu-de-garganta- branca	BB; V; A	LC		X	
Xenopidae Bonaparte, 1854						
Xenops minutus (Sparrman, 1788)	bico-virado-miúdo	ВВ	LC			
Xenops rutilans Temminck, 1821	bico-virado-carijó	BB; V; A	LC	X	X	
Furnariidae Gray, 1840						
Furnarius rufus (Gmelin, 1788)	joão-de-barro	BB; V; A	LC	X	X	X
Lochmias nematura (Lichtenstein, 1823)	joão-porca	BB; V; A	LC	X	X	
Automolus leucophthalmus (Wied, 1821)	barranqueiro-de-olho- branco	BB; V; A	LC	x	X	
Syndactyla rufosuperciliata	trepador-quiete	BB; V; A	LC	X	X	
Anabacerthia lichtensteini (Cabanis & Heine, 1859)	limpa-folha-ocráceo	BB	LC			
Clibanornis dendrocolaptoides	cisqueiro	BB; V; A	NT (IUCN)	X		
Philydor atricapillus (Wied, 1821)	limpa-folha-coroado	BB; V; A	LC		X	
Philydor rufum (Vieillot, 1818)	limpa-folha-de-testa- baia	. , , ВВ; V; А	LC	x	x	
Philydor lichtensteini	limpa-folha-ocráceo	BB; V; A	LC		X	
Cichlocolaptes leucophrus (Jardine & Selby, 1830)	trepador-sobrancelha	. , , ВВ; V; А	LC			X
Certhiaxis cinnamomeus (Gmelin, 1788)	curutié	ВВ	LC			
Cranioleuca obsoleta	arredio-oliváceo	BB; V; A	LC	X	X	

Táxon	Nome comum	Registro	Status de Conservação	ACQUAPLAN TERRA INDIGENA MOCOCA – 2017	ACQUAPLAN PROJETO PUMA - 2017	ACQUAPLAN PCH SALTO MAUÁ - 2019 - 2020
Clibanornis dendrocolaptoides	cisqueiro	BB; V; A	NT (IUCN)		X	
Leptasthenura setaria	grimpeiro	BB; V; A	NT (IUCN)		X	
Synallaxis ruficapilla Vieillot, 1819	pichororé	BB; V; A	LC	X	X	
Synallaxis cinerascens	pi-puí	BB; V; A	LC	X	X	
Heliobletus contaminatus	trepadorzinho	BB; V; A	LC		X	X
Synallaxis spixi Sclater, 1856	joão-teneném	BB; V; A	LC	X	X	X
Pipridae Rafinesque, 1815						
Manacus manacus (Linnaeus, 1766)	rendeira	ВВ	LC			
Ilicura militaris (Shaw & Nodder, 1809)	tangarazinho	ВВ	LC			
Chiroxiphia caudata (Shaw & Nodder, 1793)	tangará	BB; V; A	LC	x	X	X
Oxyruncidae Ridgway, 1906 (1831)	- i	· '				
Oxyruncus cristatus Swainson, 1821	araponga-do-horto	BB; V; A	LC	X		
Onychorhynchidae Tello, Moyle, Marchese & Cracraft, 2009		, ,				
Myiobius barbatus (Gmelin, 1789)	assanhadinho	ВВ	LC			
Myiobius atricaudus Lawrence, 1863	assanhadinho-de- cauda-preta	ВВ	LC			
Tityridae Gray, 1840						
Schiffornis virescens (Lafresnaye, 1838)	flautim	BB; V; A	LC	X	X	X
Tityra inquisitor (Lichtenstein, 1823)	anambé-branco-de- bochecha-parda	BB; V; A	LC	x	X	
Tityra cayana (Linnaeus, 1766)	anambé-branco-de- rabo-preto	BB; V; A	LC	x	X	
Pachyramphus castaneus (Jardine & Selby, 1827)	caneleiro	BB; V; A	LC	x	X	X
Pachyramphus polychopterus (Vieillot, 1818)	caneleiro-preto	BB; V; A	LC	x	X	
Pachyramphus viridis	caneleiro-verde	BB; V; A	LC	X	X	
Pachyramphus validus (Lichtenstein, 1823)	caneleiro-de-chapéu- preto	BB; V; A	LC	X	x	

Táxon	Nome comum	Registro	Status de Conservação	ACQUAPLAN TERRA INDIGENA MOCOCA – 2017	ACQUAPLAN PROJETO PUMA - 2017	ACQUAPLAN PCH SALTO MAUÁ - 2019 - 2020
Cotingidae Bonaparte, 1849						
Carpornis melanocephala (Wied, 1820)	sabiá-pimenta	ВВ	VU (IUCN, MMA)			
Pyroderus scutatus (Shaw, 1792)	pavó	BB; V; A	LC	X		
Procnias nudicollis (Vieillot, 1817)	araponga	BB; V; A	VU (IUCN)		X	
Pipritidae Ohlson, Irestedt, Ericson & Fjeldså, 2013						
Platyrinchidae Bonaparte, 1854						
Platyrinchus mystaceus Vieillot, 1818	patinho	BB; V; A	LC	X	X	
Platyrinchus leucoryphus Wied, 1831	patinho-de-asa- castanha	ВВ	VU (IUCN)			
Rhynchocyclidae Berlepsch, 1907						
Mionectes rufiventris Cabanis, 1846	abre-asa-de-cabeça- cinza	BB; V; A	LC	x	X	
Leptopogon amaurocephalus Tschudi, 1846	cabeçudo	BB; V; A	LC	x	X	
Corythopis delalandi	estalador	BB; V; A	LC	X		
Phylloscartes ventralis (Temminck, 1824)	borboletinha-do-mato	BB; V; A	LC	x	X	
Phylloscartes kronei Willis & Oniki, 1992	maria-da-restinga	BB	VU (IUCN)			
Tolmomyias sulphurescens (Spix, 1825)	bico-chato-de-orelha- preta	BB; V; A	LC	x	X	
Todirostrum poliocephalum (Wied, 1831)	teque-teque	BB; V; A	LC	x	X	X
Todirostrum cinereum (Linnaeus, 1766)	ferreirinho-relógio	BB; V; A	LC		X	
Poecilotriccus plumbeiceps (Lafresnaye, 1846)	tororó	BB; V; A	LC	X	X	
Myiornis auricularis (Vieillot, 1818)	miudinho	BB	LC			
Hemitriccus nidipendulus	tachuri-campainha	BB; V; A	LC	X		
Hemitriccus diops	olho-falso	BB; V; A	LC	X	X	
Hemitriccus orbitatus (Wied, 1831)	tiririzinho-do-mato	BB	NT (IUCN)			
Hemitriccus kaempferi (Zimmer, 1953)	maria-catarinense	ВВ	EN (IUCN); VU (MMA)			

Táxon	Nome comum	Registro	Status de Conservação	ACQUAPLAN TERRA INDIGENA MOCOCA – 2017	ACQUAPLAN PROJETO PUMA - 2017	ACQUAPLAN PCH SALTO MAUÁ - 2019 - 2020
Tyrannidae Vigors, 1825						
Hirundinea ferruginea (Gmelin, 1788)	gibão-de-couro	BB; V; A	LC	X	X	X
Tyranniscus burmeisteri	piolhinho-chiador	BB; V; A	LC		X	
Euscarthmus meloryphus	barulhento	BB; V; A	LC	X		
Camptostoma obsoletum (Temminck, 1824)	risadinha	BB; V; A	LC	x	X	X
Elaenia flavogaster (Thunberg, 1822)	guaracava-de-barriga- amarela	BB; V; A	LC	x	X	
Elaenia chilensis	guaracava-de-crista- branca	BB; V; A	LC		X	
Elaenia parvirostris Pelzeln, 1868	tuque-pium	BB; V; A	LC	X	X	X
Elaenia mesoleuca (Deppe, 1830)	tuque	ВВ	LC			
Elaenia obscura (d'Orbigny & Lafresnaye, 1837)	tucão	BB; V; A	LC	x	x	
Myiopagis caniceps (Swainson, 1835)	guaracava-cinzenta	BB; V; A	LC	X	X	
Myiopagis viridicata	guaracava-de-crista- alaranjada	BB; V; A	LC	x	X	
Capsiempis flaveola	marianinha-amarela	BB; V; A	LC	X	X	
Phyllomyias virescens (Temminck, 1824)	piolhinho-verdoso	BB; V; A	LC		X	
Phyllomyias fasciatus (Thunberg, 1822)	piolhinho	BB	LC			
Phyllomyias griseocapilla Sclater, 1862	piolhinho-serrano	BB	NT (IUCN)			
Serpophaga subcristata (Vieillot, 1817)	alegrinho	BB; V; A	LC	X	X	X
Attila rufus (Vieillot, 1819)	capitão-de-saíra	BB	LC			X
Attila phoenicurus	capitão-castanho	BB; V; A	LC		X	
Legatus leucophaius (Vieillot, 1818) Ramphotrigon megacephalum	bem-te-vi-pirata	BB; V; A	LC	x	X	
(Swainson, 1835) Myiarchus swainsoni Cabanis & Heine,	maria-cabeçuda	ВВ	LC	v	v	
1859	irré	BB; V; A	LC	X	X	
Myiarchus ferox (Gmelin, 1789)	maria-cavaleira	BB; V; A	LC	X	X	

Táxon	Nome comum	Registro	Status de Conservação	ACQUAPLAN TERRA INDIGENA MOCOCA - 2017	ACQUAPLAN PROJETO PUMA - 2017	ACQUAPLAN PCH SALTO MAUÁ - 2019 - 2020
Sirystes sibilator (Vieillot, 1818)	gritador	BB; V; A	LC	X		X
Pitangus sulphuratus (Linnaeus, 1766)	bem-te-vi	BB; V; A	LC	X	X	X
Machetornis rixosa (Vieillot, 1819)	suiriri-cavaleiro	BB; V; A	LC	X	X	
Myiodynastes maculatus (Statius Muller, 1776)	bem-te-vi-rajado	BB; V; A	LC	X	X	
Megarynchus pitangua (Linnaeus, 1766)	neinei	BB; V; A	LC	X	X	X
Myiozetetes similis (Spix, 1825)	bentevizinho-de- penacho-vermelho	BB; V; A	LC	x	X	X
Tyrannus melancholicus Vieillot, 1819	suiriri	BB; V; A	LC	X	X	X
Tyrannus savana Daudin, 1802	tesourinha	BB; V; A	LC	X	X	X
Empidonomus varius (Vieillot, 1818)	peitica	BB; V; A	LC	X	X	X
Conopias trivirgatus (Wied, 1831)	bem-te-vi-pequeno	BB	LC			
Colonia colonus (Vieillot, 1818)	viuvinha	BB; V; A	LC	X	X	X
Myiophobus fasciatus (Statius Muller, 1776)	filipe	BB; V; A	LC	X	X	
Pyrocephalus rubinus (Boddaert, 1783)	príncipe	BB; V; A	LC		X	
Cnemotriccus fuscatus (Wied, 1831)	guaracavuçu	BB; V; A	LC	X	X	
Lathrotriccus euleri (Cabanis, 1868)	enferrujado	BB; V; A	LC	X	X	
Contopus cinereus (Spix, 1825)	papa-moscas-cinzento	BB; V; A	LC	X	X	
Satrapa icterophrys (Vieillot, 1818)	suiriri-pequeno	BB; V; A	LC		X	
Knipolegus cyanirostris	maria-preta-de-bico- azulado	BB; V; A	LC	X	X	
Xolmis velatus	noivinha-branca	BB; V; A	LC		X	
Muscipipra vetula (Lichtenstein, 1823)	tesoura-cinzenta	BB; V; A	LC	X		
Vireonidae Swainson, 1837						
Cyclarhis gujanensis (Gmelin, 1789)	pitiguari	BB; V; A	LC	X	X	
Hylophilus poicilotis Temminck, 1822	verdinho-coroado	BB; V; A	LC		X	
Hylophilus pectoralis Sclater, 1866	vite-vite-de-olho-cinza	ВВ	LC			
Vireo chivi (Vieillot, 1817)	juruviara	BB; V; A	LC	x	X	

Táxon	Nome comum	Registro	Status de Conservação	ACQUAPLAN TERRA INDIGENA MOCOCA – 2017	ACQUAPLAN PROJETO PUMA - 2017	ACQUAPLAN PCH SALTO MAUÁ - 2019 - 2020
Corvidae Leach, 1820						
Cyanocorax caeruleus (Vieillot, 1818)	gralha-azul	BB	LC			
Cyanocorax chrysops	gralha-picaça	BB; V; A	LC	X	X	X
Hirundinidae Rafinesque, 1815						
Pygochelidon cyanoleuca (Vieillot, 1817)	andorinha-pequena- de-casa	BB; V; A	LC	x	X	X
Stelgidopteryx ruficollis (Vieillot, 1817)	andorinha-serradora	BB; V; A	LC	X	X	X
Progne tapera (Vieillot, 1817)	andorinha-do-campo	BB; V; A	LC	X	X	
Progne chalybea (Gmelin, 1789)	andorinha-grande	BB; V; A	LC	X	X	
Tachycineta leucorrhoa (Vieillot, 1817)	andorinha-de-sobre- branco	BB; V; A	LC	X	X	X
Tachycineta albiventer	andorinha-do-rio	BB; V; A	LC	X	X	X
Riparia riparia (Linnaeus, 1758)	andorinha-do-barranco	BB	LC			
Hirundo rustica Linnaeus, 1758	andorinha-de-bando	BB	LC			
Alopochelidon fucata (Temminck, 1822) Petrochelidon pyrrhonota (Vieillot,	andorinha-morena andorinha-de-dorso-	BB	LC			
1817)	acanelado	BB	LC			
Troglodytidae Swainson, 1831						
Troglodytes musculus Naumann, 1823	corruíra	BB	LC	X	X	X
Cantorchilus longirostris (Vieillot, 1819)	garrinchão-de-bico- grande	BB	LC			
Polioptilidae Baird, 1858						
Ramphocaenus melanurus Vieillot, 1819	chirito	BB	LC			
Polioptila dumicola (Vieillot, 1817)	balança-rabo-de- máscara	ВВ	LC			
Turdidae Rafinesque, 1815						
Turdus flavipes Vieillot, 1818	sabiá-una	ВВ	LC			
Turdus leucomelas Vieillot, 1818	sabiá-branco	BB; V; A	LC	X	X	X
Turdus rufiventris Vieillot, 1818	sabiá-laranjeira	BB; V; A	LC	X	X	X

Táxon	Nome comum	Registro	Status de Conservação	ACQUAPLAN TERRA INDIGENA MOCOCA – 2017	ACQUAPLAN PROJETO PUMA - 2017	ACQUAPLAN PCH SALTO MAUÁ - 2019 - 2020
Turdus amaurochalinus Cabanis, 1850	sabiá-poca	BB; V; A	LC	X	X	X
Turdus subalaris	sabiá-ferreiro	BB; V; A	LC	X	X	
Turdus albicollis Vieillot, 1818	sabiá-coleira	BB; V; A	LC	X	X	
Mimidae Bonaparte, 1853						
Mimus saturninus (Lichtenstein, 1823)	sabiá-do-campo	BB; V; A	LC	X	X	
Motacillidae Horsfield, 1821						
Anthus lutescens Pucheran, 1855	caminheiro-zumbidor	BB; V; A	LC		X	
Passerellidae Cabanis & Heine, 1850		, ,				
Zonotrichia capensis (Statius Muller, 1776)	tico-tico	BB; V; A	LC	×	x	X
Ammodramus humeralis (Bosc, 1792)	tico-tico-do-campo	BB; V; A	LC		X	
Arremon semitorquatus	tico-tico-do-mato	BB; V; A	LC	X	X	
Parulidae Wetmore et al. 1947						
Setophaga pitiayumi (Vieillot, 1817)	mariquita	BB; V; A	LC	X	X	X
Geothlypis aequinoctialis (Gmelin, 1789)	pia-cobra	BB; V; A	LC	x	X	
Basileuterus culicivorus (Deppe, 1830)	pula-pula	BB; V; A	LC	X	X	X
Myiothlypis leucoblephara (Vieillot, 1817)	pula-pula-assobiador	BB; V; A	LC	x	X	
Myiothlypis rivularis (Wied, 1821)	pula-pula-ribeirinho	ВВ	LC			
Donacobidae Aleixo & Pacheco, 2006						
Donacobius atricapilla (Linnaeus, 1766)	japacanim	ВВ	LC			
Icteridae Vigors, 1825						
Cacicus chrysopterus (Vigors, 1825)	japuíra	BB; V; A	LC	X	X	
Cacicus haemorrhous (Linnaeus, 1766)	guaxe	BB; V; A	LC	X	X	
Icterus cayanensis (Linnaeus, 1766)	inhapim	ВВ	LC			
Icterus pyrrhopterus	encontro	BB; V; A	LC	X	X	

Táxon	Nome comum	Registro	Status de Conservação	ACQUAPLAN TERRA INDIGENA MOCOCA – 2017	ACQUAPLAN PROJETO PUMA - 2017	ACQUAPLAN PCH SALTO MAUÁ - 2019 - 2020
Gnorimopsar chopi (Vieillot, 1819)	pássaro-preto	BB; V; A	LC	X	X	
Chrysomus ruficapillus (Vieillot, 1819)	garibaldi	BB	LC			
Pseudoleistes virescens (Vieillot, 1819)	dragão	BB	LC			
Pseudoleistes guirahuro	chopim-do-brejo	BB; V; A	LC	X	X	
Molothrus bonariensis (Gmelin, 1789)	chupim	BB; V; A	LC		X	
Molothrus oryzivorus	iraúna-grande	BB; V; A	LC	X		
Sturnella superciliaris (Bonaparte, 1850) Amblyramphus holosericus (Scopoli,	polícia-inglesa-do-sul	BB; V; A	LC		x	
1786)	cardeal-do-banhado	BB	LC			
Mitrospingidae Barker, Burns, Klicka, Lanyon & Lovette, 2013						
Orthogonys chloricterus (Vieillot, 1819)	catirumbava	BB	LC			
Thraupidae Cabanis, 1847						
Orchesticus abeillei (Lesson, 1839)	sanhaço-pardo	BB	NT (IUCN)			
Pipraeidea melanonota (Vieillot, 1819)	saíra-viúva	BB; V; A	LC	X	X	X
Pipraeidea bonariensis (Gmelin, 1789)	sanhaço-papa-laranja	BB; V; A	LC	X	X	
Tangara cayana	saíra-amarela	BB; V; A	LC		X	
Tangara seledon (Statius Muller, 1776) Tangara cyanocephala (Statius Muller,	saíra-sete-cores	ВВ	LC			
1776)	saíra-militar	BB	LC			
Tangara desmaresti (Vieillot, 1819)	saíra-lagarta	BB	LC			
Tangara sayaca (Linnaeus, 1766)	sanhaço-cinzento	BB; V; A	LC		X	X
Tangara cyanoptera (Vieillot, 1817)	sanhaço-de-encontro- azul	BB; V; A	NT (IUCN)		X	
Tangara palmarum (Wied, 1821)	sanhaço-do-coqueiro	BB	LC			
Tangara peruviana (Desmarest, 1806)	saíra-sapucaia	BB	VU (IUCN, MMA)			
Tangara preciosa (Cabanis, 1850)	saíra-preciosa	BB; V; A	LC		X	
Tiaris fuliginosus	cigarra-do-coqueiro	BB; V; A	LC	X		

Táxon	Nome comum	Registro	Status de Conservação	ACQUAPLAN TERRA INDIGENA MOCOCA – 2017	ACQUAPLAN PROJETO PUMA - 2017	ACQUAPLAN PCH SALTO MAUÁ - 2019 - 2020
Conirostrum speciosum (Temminck, 1824)	figuinha-de-rabo- castanho	BB	LC	х	Х	
Sicalis flaveola (Linnaeus, 1766)	canário-da-terra	BB; V; A	LC	X	x	X
Sicalis luteola	tipio	BB; V; A	LC		X	
Haplospiza unicolor Cabanis, 1851	cigarra-bambu	BB; V; A	LC		X	
Chlorophanes spiza (Linnaeus, 1758)	saí-verde	BB	LC			
Hemithraupis ruficapilla (Vieillot, 1818)	saíra-ferrugem	BB	LC			
Hemithraupis guira	saíra-de-papo-preto	BB; V; A	LC	X	X	
Volatinia jacarina (Linnaeus, 1766)	tiziu	BB; V; A	LC	X	X	
Trichothraupis melanops (Vieillot, 1818)	tiê-de-topete	BB; V; A	LC		X	X
Lanio cristatus (Linnaeus, 1766)	tiê-galo	BB	LC			
Tachyphonus coronatus (Vieillot, 1822)	tiê-preto	BB; V; A	LC	X	X	
Ramphocelus bresilius (Linnaeus, 1766)	tiê-sangue	BB	LC			
Tersina viridis (Illiger, 1811)	saí-andorinha	BB; V; A	LC	X	X	
Dacnis nigripes Pelzeln, 1856	saí-de-pernas-pretas	ВВ	NT (IUCN)			
Dacnis cayana (Linnaeus, 1766)	saí-azul	BB; V; A	LC	X	X	
Coereba flaveola (Linnaeus, 1758)	cambacica	BB; V; A	LC	X	X	X
Sporophila angolensis	curió	BB; V; A	LC		X	
Sporophila lineola	bigodinho	BB; V; A	LC	X		X
Sporophila plumbea (Wied, 1830)	patativa	ВВ	LC			
Sporophila frontalis (Verreaux, 1869)	pixoxó	ВВ	VU (IUCN, MMA)			
Sporophila caerulescens (Vieillot, 1823)	coleirinho	BB; V; A	LC	X	X	X
Embernagra platensis (Gmelin, 1789)	sabiá-do-banhado	BB; V; A	LC		X	
Saltator similis d'Orbigny & Lafresnaye, 1837	trinca-ferro	BB; V; A	LC	x	X	X
Saltator fuliginosus	bico-de-pimenta	BB; V; A	LC	X	x	
Schistochlamys ruficapillus (Vieillot, 1817)	bico-de-veludo	BB; V; A	LC		x	

Táxon	Nome comum	Registro	Status de Conservação	ACQUAPLAN TERRA INDIGENA MOCOCA – 2017	ACQUAPLAN PROJETO PUMA - 2017	ACQUAPLAN PCH SALTO MAUÁ - 2019 - 2020
Thlypopsis sordida	saí-canário	BB; V; A	LC	X	X	_
Pyrrhocoma ruficeps	cabecinha-castanha	BB; V; A	LC	X	X	
Coryphospingus cucullatus	tico-tico-rei	BB; V; A	LC	X	X	
Cissopis leverianus	tietinga	BB; V; A	LC	X	X	
Microspingus cabanisi	quete-do-sul	BB; V; A	LC	X	X	
Donacospiza albifrons (Vieillot, 1817)	tico-tico-do-banhado	BB	LC			
Cardinalidae Ridgway, 1901						
Habia rubica (Vieillot, 1817)	tiê-de-bando	BB; V; A	LC	X		
Amaurospiza moesta	negrinho-do-mato	BB; V; A	LC	X	X	
Cyanoloxia glaucocaerulea	azulinho	BB; V; A	LC	X		X
Cyanoloxia brissonii	azulão	BB; V; A	LC		X	
Piranga flava	sanhaçu-de-fogo	BB; V; A	LC		X	
Fringillidae Leach, 1820						
Spinus magellanicus (Vieillot, 1805)	pintassilgo	BB; V; A	LC	X	X	X
Euphonia violacea (Linnaeus, 1758)	gaturamo	BB; V; A	LC		X	X
Euphonia chalybea (Mikan, 1825)	cais-cais	BB; V; A	NT (IUCN)	X	X	
Euphonia cyanocephala (Vieillot, 1818)	gaturamo-rei	BB	LC			
Euphonia chlorotica	fim-fim	BB; V; A	LC	X	X	
Euphonia pectoralis (Latham, 1801)	ferro-velho	BB	LC			
Chlorophonia cyanea	gaturamo-bandeira	BB; V; A	LC		X	
Estrildidae Bonaparte, 1850						
Estrilda astrild (Linnaeus, 1758)	bico-de-lacre	BB; V; A	LC		X	
Passeridae Rafinesque, 1815						
Passer domesticus (Linnaeus, 1758)	pardal	BB; V; A	LC		X	

A seguir, estão apresentadas algumas espécies que foram registradas durante o monitoramento quali-quantitativo durante as campanhas da avifauna na PCH Salto Mauá (Figura 7 e Figura 8).

Figura 7. Espécies registradas durante as campanhas de monitoramento da avifauna na PCH Salto Mauá. A) *Todirostrum poliocephalum*; B) *Pipraeidea melanonota*; C) *Thamnophilus ruficapillus*; D) *Saltator similis*; E) *Nyctidromus albicollis*; F) *Cyanoloxia glaucocaerulea*.

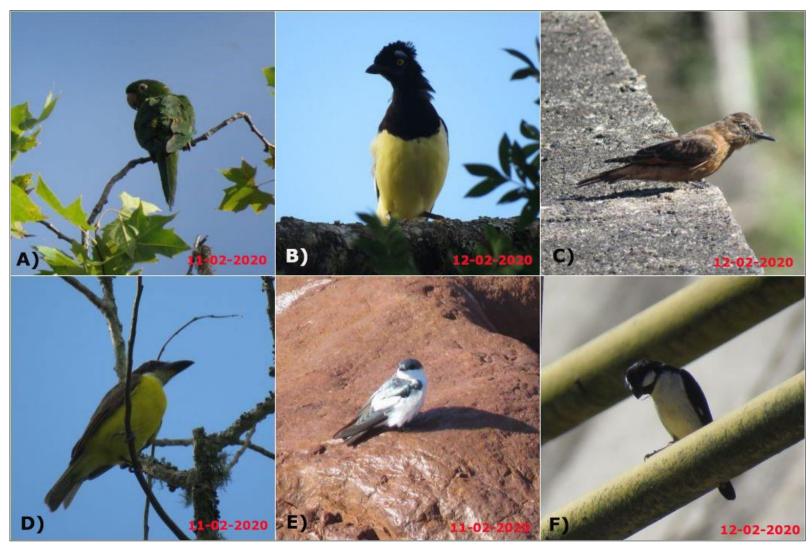


Figura 8. Espécies registradas durante as campanhas de monitoramento da avifauna na PCH Salto Mauá. A) *Psittacara leucophtalmus*; B) *Cyanocorax chrysops*; C) *Hirundinea ferruginea*; D) *Megarhynchus pitangua*; E) *Tachycineta albiventer*; F) *Sporophila lineola*

Em relação a constância das espécies, não se pode ainda aplicar a estatística necessária devido o esforço amostral não ser suficiente para aferir significativamente (mínimo 5 campanhas), sendo necessárias mais campanhas para determinar a constância de todas as espécies presentes no monitoramento, contudo espera-se que com as próximas campanha seja utilizada tal ferramenta estatística.

7.1.2. Espécies endêmicas

Em relação as espécies endêmicas, prováveis ocorrentes na região e levantadas a partir de dados secundários, foram listadas 24 espécies. Dentre essas 24 espécies endêmicas de provável ocorrência, 3 foram registradas durante as campanhas de monitoramento do presente Programa. São elas: *Brotogeris tirica*, *Todirostrum poliocephalum* e *Attila rufus* (Figura 9) segundo a lista dos táxons endêmicos do Brasil (PIACENTINI *et al.*, 2015) levantados e os dados primários obtidos neste programa estão apresentados na Tabela 3. Ainda cabe mencionar que das 24 espécies endêmicas prováveis ocorrentes, sete também estão incluídas nas listas de espécies ameaçadas.

Figura 9. Espécies endêmicas registradas durante as campanhas de monitoramento da avifauna na PCH Salto Mauá. A) *Todirostrum poliocephalum*, B) *Attila rufus*, C) *Brotogeris tirica*.

Tabela 3. Espécies da avifauna endêmicas de provável ocorrência para a área de estudo e registradas durante a campanha de monitoramento da avifauna na PCH Salto Mauá, em julho/2019 e fevereiro/2020.

Táxon	Status de Conservação	Registro	Status	Acquaplan PCH Salto Mauá – 2019/2020
Aratinga auricapillus (Kuhl, 1820)	LC	ВВ	R,E	
<i>Brotogeris tirica</i> (Gmelin, 1788)	LC	BB; A;V	R,E	x
Phaethornis squalidus (Temminck, 1822)	LC	ВВ	R,E	

Táxon	Status de Conservação	Registro	Status	Acquaplan PCH Salto Mauá – 2019/2020
Lophornis magnificus (Vieillot, 1817)	NT/PR	ВВ	R,E	
<i>Malacoptila striata</i> (Spix, 1824)	LC	ВВ	R,E	
Drymophila ferruginea (Temminck, 1822)	LC	ВВ	R,E	
<i>Drymophila ochropyga</i> (Hellmayr, 1906)	LC	ВВ	R,E	
Eleoscytalopus indigoticus (Wied, 1831)	LC	ВВ	R,E	
Scytalopus speluncae (Ménétriès, 1835)	LC	ВВ	R,E	
<i>Chamaeza meruloides</i> Vigors, 1825	NT/PR	ВВ	R,E	
Leptasthenura striolata (Pelzeln, 1856)	NT/PR	ВВ	R,E	
Onychorhynchus swainsoni (Pelzeln, 1858)	NT/PR; VU/MMA	ВВ	R,E	
Phylloscartes oustaleti (Sclater, 1887)	LC	ВВ	R,E	
Todirostrum poliocephalum (Wied, 1831) Hemitriccus nidipendulus	LC	BB; A-V	R,E	X
(Wied, 1831) Phyllomyias griseocapilla	LC	ВВ	R,E	
Sclater, 1862	NT/PR	BB	R,E	
Attila rufus (Vieillot, 1819)	LC	BB; A	R,E	X
Knipolegus nigerrimus (Vieillot, 1818)	LC	ВВ	R,E	
Orchesticus abeillei (Lesson, 1839)	NT/PR	ВВ	R,E	
Orthogonys chloricterus (Vieillot, 1819)	LC	ВВ	R,E	
Tangara cyanoptera (Vieillot, 1817)	LC	ВВ	R,E	
Tangara peruviana (Desmarest, 1806)	LC	ВВ	R,E	
Dacnis nigripes Pelzeln, 1856	NT/PR	ВВ	R,E	
<i>Hemithraupis ruficapilla</i> (Vieillot, 1818)	LC	ВВ	R,E	

7.2. Análises quantitativas

Nas amostragens quantitativas, ou seja, a partir da realização dos pontos de contagem em raio fixo, foram registrados 1.135 indivíduos distribuídos em 87 espécies. As espécies mais abundantes na área de estudo foram: *Pygochelidon cyanoleuca*, *Coragyps atratus*, *Psittacara leucophtalmus*, *Sicalis flaveola*, *Basileuterus culicivorus* e *Columbina talpacoti*, respectivamente (Tabela 4).

Tabela 4. Número de Indivíduos de cada espécie registrada nas campanhas de julho/2019 e fevereiro/2020 do Monitoramento da Avifauna na Pequena Central Hidrelétrica (PCH) Salto Mauá da Klabin Celulose.

Celulose.	
Táxons	Nº de indivíduos
Pygochelidon cyanoleuca (Vieillot, 1817)	124
Pyrrhura frontalis (Vieillot, 1817)	59
Pitangus sulphuratus (Linnaeus, 1766)	56
Coragyps atratus (Bechstein, 1793)	49
Psittacara leucophthalmus (Statius Muller, 1776)	46
Columbina talpacoti (Temminck, 1810)	43
Sicalis flaveola (Linnaeus, 1766)	41
Basileuterus culicivorus (Deppe, 1830)	37
Tachycineta leucorrhoa (Vieillot, 1817)	33
Vanellus chilensis (Molina, 1782)	32
Furnarius rufus (Gmelin, 1788)	31
Nannopterum brasilianus (Gmelin, 1789)	29
Tyrannus melancholicus Vieillot, 1819	28
Empidonomus varius (Vieillot, 1818)	21
Troglodytes musculus Naumann, 1823	21
Turdus leucomelas Vieillot, 1818	21
Todirostrum poliocephalum (Wied, 1831)	18
Stelgidopteryx ruficollis (Vieillot, 1817)	17
Patagioenas picazuro (Temminck, 1813)	16
Zonotrichia capensis (Statius Muller, 1776)	16
Cathartes aura (Linnaeus, 1758)	15
Turdus rufiventris Vieillot, 1818	15
Saltator similis d'Orbigny & Lafresnaye, 1837	15
Sirystes sibilator (Vieillot, 1818)	14
Megarhynchus pitangua (Linnaeus, 1766)	14
Colonia colonus (Vieillot, 1818)	14
Guira guira (Gmelin, 1788)	13
Veniliornis spilogaster (Wagler, 1827)	13
Brotogeris tirica (Gmelin, 1788)	13
Schiffornis virescens (Lafresnaye, 1838)	13
Zenaida auriculata (Des Murs, 1847)	12
Crotophaga ani Linnaeus, 1758	12
Picumnus temminckii Lafresnaye, 1845	12
Setophaga pitiayumi (Vieillot, 1817)	12
Aramides saracura (Spix, 1825)	11
Forpus xanthopterygius (Spix, 1824)	10
Milvago chimachima (Vieillot, 1816)	8
Synallaxis spixi Sclater, 1856	8
Tachycineta albiventer (Boddaert, 1783)	7
Athene cunicularia (Molina, 1782)	6
Thalurania glaucopis (Gmelin, 1788)	6

Táxons	Nº de indivíduos
Hirundinea ferruginea (Gmelin, 1788)	6
Myiozetetes similis (Spix, 1825)	6
Spinus magellanicus (Vieillot, 1805)	6
Larus dominicanus Lichtenstein, 1823	5
Leptotila verreauxi Bonaparte, 1855	5
Megaceryle torquata (Linnaeus, 1766)	5
Thamnophilus caerulescens Vieillot, 1816	5
Cichlocolaptes leucophrus (Jardine & Selby, 1830)	5
Chiroxiphia caudata (Shaw & Nodder, 1793)	5
Tyrannus savana Daudin, 1802	5
Tangara sayaca (Linnaeus, 1766)	5
Sporophila caerulescens (Vieillot, 1823)	5
Penelope obscura Temminck, 1815	5
Ardea alba Linnaeus, 1758	4
Egretta thula (Molina, 1782)	4
Trogon surrucura Vieillot, 1817	4
Ramphastos dicolorus Linnaeus, 1766	4
Caracara plancus (Miller, 1777)	4
Pyriglena leucoptera (Vieillot, 1818)	4
Turdus amaurochalinus Cabanis, 1850	4
Euphonia violacea (Linnaeus, 1758)	4
Ardea cocoi Linnaeus, 1766	3
Egretta caerulea (Linnaeus, 1758)	3
Rupornis magnirostris (Gmelin, 1788)	3
Nyctidromus albicollis (Gmelin, 1789)	3
Florisuga fusca (Vieillot, 1817)	3
Eupetomena macroura (Gmelin, 1788)	3
Camptostoma obsoletum (Temminck, 1824)	3
Elaenia parvirostris Pelzeln, 1868	3
Serpophaga subcristata (Vieillot, 1817)	3
Coereba flaveola (Linnaeus, 1758)	3
Trichothraupis melanops (Vieillot, 1818)	3
Nycticorax nycticorax (Linnaeus, 1758)	2
Columbina squammata (Lesson, 1831)	2
Patagioenas plúmbea (Vieillot, 1818)	2
Piaya cayana (Linnaeus, 1766)	2
Trogon viridis Linnaeus, 1766	2
Pachyramphus castaneus (Jardine & Selby, 1827)	2
Pipraeidea melanonota (Vieillot, 1819)	2
Sporophila lineola (Linnaeus, 1758)	2
Campephilus robustus (Lichtenstein, 1818)	1
Thamnophilus ruficapillus Vieillot, 1816	1
Heliobletus contaminatus Pelzeln, 1859	1

Táxons	Nº de indivíduos
Attila rufus (Vieillot, 1819)	1
Cyanoloxia glaucocaerulea (d'Orbigny & Lafresnaye, 1837)	1

A maior abundância de espécies como *P. cyanoleuca*, *P. frontalis* e *P. leucophtalmus* devese ao fato que tais espécies possuem hábitos gregários, vivendo em pares ou bando e são espécies que são facilmente registradas pelos métodos visual/auditivo, o que facilita a contagem destes indivíduos no ambiente (SICK, 1997). Já *P. sulphuratus*, *C. atratus* e *C. talpacoti* são espécies que não possuem alta sensibilidade ambiental, sendo encontradas em áreas abertas e ambientes urbanos, sendo mais facilmente observadas que espécies de interior de floresta ou que possuem alta sensibilidade a distúrbios ambientais (MANHÃES & LOURES-RIBEIRO, 2011).

Através dos Pontos de Contagem em Raio Fixo foi calculado o Índice Pontual de Abundância (IPA) e Frequência Relativa (FR) de cada espécie registrada durante o monitoramento.

O Índice Pontual de Abundância (IPA) variou de 0,125 (1 contato) a 3,375 (27 contatos) com uma média de 0,8023 (equivalente a 6 contatos/espécie) (Figura 10).

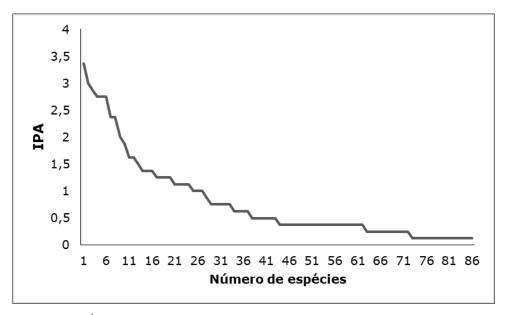


Figura 10. Índice Pontual de Abundância (IPA) de cada espécie registrada durante as campanhas de monitoramento da avifauna na PCH Salto Mauá.

As espécies que apresentaram o maior valor de IPA foram *P. sulphuratus*, *S. flaveola*, *B. culicivorus*, *C. talpacoti*, *T. melancholicus* e *P. cyanoleuca*, respectivamente (Figura 11).

Essas espécies são as mais comuns e mais abundantes na área de estudo e tal fato devese que estas habitam áreas abertas e ou bordas de floresta e vocalizam o ano todo, com exceção de *T. melancholicus*. De acordo com autores, o período de maior vocalização do tiranídeo *T. melancholicus* é no período de inverno (DAROS et al., 2018). No entanto, tal espécie esteve presente em ambas as campanhas, indicando que tal espécie possa estar adaptada a região de estudo, uma vez que tal tiranídeo é adaptado a uma ampla variedade de ambientes e nichos ecológicos, além de apresentar grande riqueza de repertórios comportamentais, favorecendo a sua subsistência no local (FITZPATRICK, 1981).

As espécies que tiveram as menores somas de IPA foram *N. nycticorax, E. caerulea, C. squammata, P. plumbea, C. robustus, T. ruficapillus, H. contaminatus, P. castaneus, A. rufus, P. melanonota, S. lineola, S. caerulescens, C. glaucocaerulea e P. obscura, respectivamente. Tais espécies foram avistadas apenas uma vez na metodologia de Contagem por Raio Fixo e quase todas apresentam hábitos de interior de floresta, com exceção de <i>N. nycticorax* e. caerulea, ou que vocalizam pouco, isto é, de hábitos inconspícuos, não sendo detectadas facilmente pelo observador sendo necessário um maior número de campanhas para detecção desses táxons no ambiente. A baixa detecção de *N. nycticorax* e *E. caerulea* no ambiente deve-se ao fato de que tais aves vivem associadas a ambientes costeiros e/ou manguezais, sendo tais ambientes não contemplados na área de estudo, e sugere-se que o seu registro seja ocasional, uma vez que tais aves realizam movimentos migratórios para corpos d'água a procura de alimento (CLEMENTS, 2005).

As espécies mais frequentes durante as campanhas deste monitoramento foram *P. cyanoleuca* (n= 124), *P. frontalis* (n= 59), *P. sulphuratus* (n=32), *C. atratus* (n= 46) e *P. leucophtalmus* (n= 46) (Figura 12). Conforme citado anteriormente, tais espécies possuem hábito gregário e/ou possuem hábitos conspícuos, isto é, são facilmente detectadas no ambiente. A presença de *P. cyanoleuca* pode estar ligado ao fato de a área de estudo possuir grandes corpos d'água, o que beneficia essas espécies que se alimentam de insetos voadores que ficam próximos aos rios (PEREIRA & MELO, 2010). Vale ressaltar que a presença de psitacídeos na área de monitoramento é de suma importância, uma vez que tal família sofre constante pressão antropogênica por conta do tráfico e comércio ilegal (WRIGHT *et al.*, 2001).

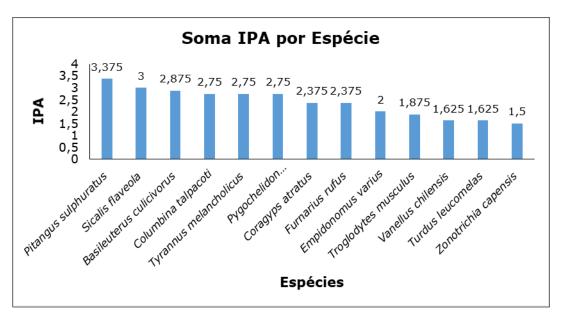


Figura 11. Espécies com maiores valores de IPA registradas nas campanhas do Monitoramento da Avifauna na Pequena Central Hidrelétrica (PCH) Salto Mauá da Klabin Celulose, em ordem decrescente.

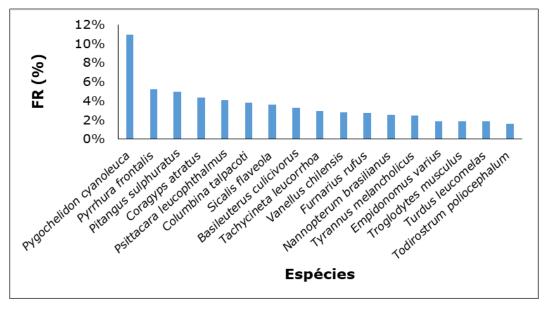


Figura 12. FR (Frequência Relativa) em porcentagem das espécies registradas nas campanhas do Monitoramento da Avifauna na Pequena Central Hidrelétrica (PCH) Salto Mauá da Klabin Celulose, em ordem decrescente.

A fim de analisar a diversidade das espécies registradas durante as campanhas de julho/2019 (inverno) e fevereiro/2020 (verão) do monitoramento da avifauna, e comparar as estações climáticas, foi gerada uma tabela com os índices de diversidade (Tabela 6).

A riqueza e abundância específica foram semelhantes em ambas as estações climáticas, quando comparadas, no entanto, no período de inverno houve uma maior diversidade e

abundância. Um dos fatores que pode influenciar é a precipitação que ocorre no período de verão (Tabela 5), fator que foi visto nos períodos de campo, onde tiveram longos períodos de chuva durante o monitoramento, interferindo na detecção de algumas espécies de aves.

Tabela 5. Dados Climatológicos referente aos meses de Janeiro e Fevereiro de 2020 para o município de Telêmaco Borba, PR.

Dados Climatológicos	JUL.19	AGO.19	JAN.20	FEV.20
Temperatura média (°C)	14	15.9	22.1	22
Temperatura mínima (°C)	7	8.5	16.1	16.2
Temperatura máxima (°C)	21.1	23.3	28.2	27.9
Precipitação média (mm)	75	70	155	145

Legenda: JUL (Julho), AGO (Agosto), JAN (Janeiro), FEV (Fevereiro), 19 (Ano de 2019), 20 (Ano de 2020). Fonte: CPTEC/INPE

O índice de Simpson se mostrou alto durante as campanhas de julho/2019 e fevereiro/2020, considerando que valores próximos a 1 são valores atribuídos a uma maior diversidade específica e uma menor dominância específica, o que pode ser visto na Tabela 6, uma vez que o valores de dominância se mostraram baixos em ambas as campanhas. Tais valores indicam que poucas espécies apresentaram uma abundância e que há uma maior heterogeneidade no ambiente amostrado.

Tabela 6. Índices de Diversidade calculados com o auxílio do *software* PAST nas campanhas de julho de 2019 e fevereiro de 2020 onde método quantitativo foi aplicado.

Índices de Diversidade	JUL.2019	FEV.2020
Táxons	62	60
Indivíduos	580	555
Dominância	0,037	0,041
Índice de Simpson	0,963	0,959
Índice de Shannon	3,672	3,609
Equitatividade	0,635	0,616
Índice de Brillouin	3,484	3,42
Índice de Menhick	2,574	2,547
Índice de Margalef	9,587	9,337
Equitabilidade	0,890	0,882
Índice de Fisher-alpha	17,58	17,09

Índice de Berger-Parker	0,098	0,121
Chao-1	64,14	60,1

7.2.1. Perfil de Diversidade de Rényi

O perfil de Diversidade de Rényi foi optado por permitir a comparação da diversidade em cada uma das campanhas, visto que alguns índices são mais sensíveis às espécies raras e outros a dominância específica. Durante as duas campanhas as curvas do Perfil de Diversidade (Figura 13) foram suaves ao longo do perfil, o que indica uma alta uniformidade, o que é corroborado pelos dados supracitados, onde a diversidade se mostrou semelhante em ambas as campanhas.

Foi utilizado também o teste de Kruskal-Wallis para avaliar a significância estatística dos valores do índice de Rényi. O teste de Kruskal-Wallis indicou que não houve diferença significativa nas campanhas, o que mostra uma uniformidade em relação a diversidade específica.

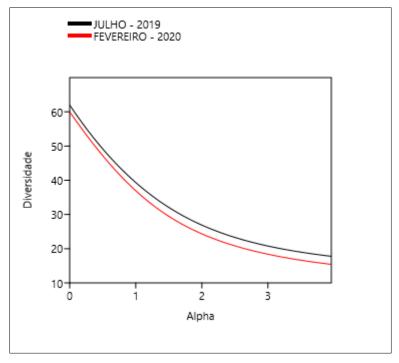


Figura 13. Perfil de Diversidade utilizando a Série de Rényi durante as campanhas do Programa de Monitoramento da Avifauna na Pequena Central Hidrelétrica Salto Mauá

7.2.1. Curva de Rarefação

Com o objetivo de verificar a suficiência do esforço amostral até o momento, foi gerado no programa R versão 3.1.2, a Curva de Rarefação (Figura 14), a qual mostra o acúmulo de espécies registradas. Através desta análise é possível perceber que a curva não chegou à assíntota e, embora esteja próxima da estabilização, os estimadores Bootstrap (97,23) e Jackknife (104,66) indicam que a curva ainda apresenta um comportamento ascendente. Quando a curva de rarefação estabiliza, ou seja, atinge um ponto em que o esforço de coleta não resulta no aumento de espécies, significa que praticamente toda riqueza da área foi amostrada (Gotelli & Colwell, 2001). Ao comparar com os trabalhos pretéritos realizados em áreas adjacentes à área de estudo, pode se confirmar que é necessário um maior esforço para se estimar a composição específica com precisão das espécies na área de estudo.

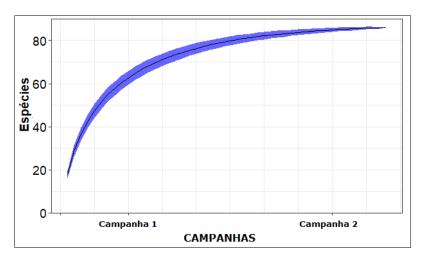


Figura 14. Curva de rarefação realizada pelo software R Statistics.

8. CONSIDERAÇÕES FINAIS

A presença de espécies insetívoras de sub-bosque e de espécies frugívoras registradas durante as duas campanhas deste monitoramento, como a *C. obsoletum*, *P. castaneus*, *T ruficapillus*, *P. melanonota* e *C. chrysops* indicam um ambiente complexo, que mantém a fitofisionomia e/ou que apresenta áreas onde tais indivíduos possam encontrar áreas menos antropizadas e que possui recursos suficientes para tais espécies existirem, uma vez que tais espécies são de média a grande sensibilidade ambiental.

As principais famílias que ocorreram na região foram as famílias Psittacidae, Hirundinidae e Tyrannidae. A ausência de indivíduos da família Dendrocolaptidae indica que tal ambiente não possui áreas de interior de floresta de grande extensão, sendo as espécies que ocorrem nas bordas ou áreas abertas predominantes. Por outro lado, três espécies da família Thamnophilidae foram registradas durante o presente monitoramento, sendo que estas espécies possuem alta sensibilidade a distúrbios ambientais.

Ao todo foram registradas 87 espécies. Destas 87 espécies, nenhuma destas está em algum grau de ameaça. A presença de espécies ameaçadas de extinção pode indicar que o ambiente ainda suporta áreas de maior conservação. No entanto, para tal monitoramento a ausência dessas espécies pode indicar a necessidade de mais campanhas para ter dados mais significativos a respeito do nível de preservação do local.

9. REFERÊNCIAS BIBLIOGRÁFICAS

ALEIXO, A. 1999. Effects of selective logging on a bird community in the Brazilian Atlantic Forest. The Condor, Camarillo, 101: 537-548.

BIRDLIFE INTERNATIONAL 2017. World Database of Key Biodiversity Areas. Developed by the KBA Partnership: BirdLife International, International Union for the Conservation of Nature, Amphibian Survival Alliance, Conservation International, Critical Ecosystem Partnership Fund, Global Environment Facility, Global Wildlife Conservation, NatureServe, Rainforest Trust, Royal Society for the Protection of Birds, Wildlife Conservation Society and World Wildlife Fund.

BROWER, J.E. & ZAR, J.H. 1984. Field & laboratory methods for general ecology. W.C. Brown Publishers, Boston.

CENTRO DE PREVISÃO DE TEMPO E ESTUDOS CLIMÁTICOS. INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS. 2020. Dados climatológicos do município de Telêmaco Borba, PR. https://www.cptec.inpe.br/previsao-tempo/pr/telemaco-borba. Acesso em: 20 de fevereiro de 2020.

CLEMENTS, J. F. 2005 The Clements Checklist of Birds of the World. Cornell: Cornell University Press. http://www.birds.cornell.edu/clementschecklist/ acesso em: 26 de abril de 2016.

DAROS, Hermes; DUTRA, William Barbosa and DUCA, Charles. Breeding biology of *Tyrannus melancholicus* (Aves: Tyrannidae) in a restinga reserve of southeastern Brazil. Zoologia (Curitiba) [online]. 2018, vol.35

FITZPATRICK, J.W. 1981. Search strategies of tyrant flycatchers. **Animal Behavior**, London, **29** (3): 810-821.

GONZAGA, L. P. & CASTIGLIONI, G. 2001. Aves das montanhas do sudeste do Brasil. CD de Áudio. Rio de Janeiro, Arquivo Sonoro Prof. Elias Coelho, UFRJ (ASECCD01).

GOTELLI, N.J. AND COLWELL, R.K. (2001) Quantifying Biodiversity: Procedures and Pitfalls in the Measurement and Comparison of Species Richness. Ecology Letters, 4, 379-391. http://dx.doi.org/10.1046/j.1461-0248.2001.00230.x

HAMMER, O.; D.A.T. HARPER & P.D. RYAN. 2001. PAST: Paleontological Statistic software package for education and data analysis. Paleontologia Eletronica 4 (1): 1-9.

HILL, M.O. 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 54(2):427-432.

ISLER, P.R. & WHITNEY, B.M. (2002) Songs of the Antbirds: Thamnophilidae, Formicariidae, and Conopophagidae. Cornell Laboratory of Ornithology, Ithaca.

IUCN. 2018. The IUCN Redlist of Threatened Species. Cambridge/UK, The IUCN Species Survival Comission. URL: http://www.redlist.org (acessado em 20 de fevereiro de 2020).

KREBS, C. J. (1989). Ecological methodology. New York, NY: Harper and Row Publishers Inc., 654 p.

LIU, C., WHITTAKER, R.J., MA, K. & MALCOLM, J.R. 2007. Unifying and distinguishing diversity ordering methods for comparing communities. Pop. Ecol. 49(2):89-100.

LUDWIG, J.A. AND REYNOLDS, J.F. (1988) Statistical Ecology: A Primer on Methods and Computing. Wiley-Interscience Pub., New York.

MAGURRAN, A.E. 1988. Ecological Diversity and its measurement. Princeton, Newjersey, VI+I79p

MANHÃES, M.A. & LOURES-RIBEIRO, A. The avifauna of the Poço D'Anta Municipal Biological Reserve, Juiz de Fora, MG. Biota Neotrop. 11(3): http://www.biotaneotropica.org.br/v11n3/en/abstract?inventory+ bn01411032011

MARINI, M. A. e GARCIA, F. I. 2005. Conservação de Aves no Brasil. Megadiversidade, v.1, n.1, Julho/ p. 95 – 102.

MELO, A.S. 2008. O que ganhamos 'confundindo' riqueza de espécies e equabilidade num índice de diversidade? Biota Neotropica 8:21-27.

MIKICH, S.B.; BÉRNILS, R.S. & PIZZI, P.A. 2004. Fauna ameaçada no Paraná: uma síntese. In: S.B.Mikich & R.S.Bérnils eds. Livro vermelho da fauna ameaçada no Estado do Paraná. Curitiba, Instituto Ambiental do Paraná. p. 743-754.

PEREIRA, Z.P. & MELO, C. 2010. Nidificação da andorinha azul-ebranca (Pygochelidon cyanoleuca) em ambiente urbano do Sudeste do Brasil. Biotemas 23(3):117-123. http://dx.doi.org/10.5007/2175- 7925.2010v23n3p117

PERLO, VAN B. (2009). A Field guide to the birds of Brazil. New York: Oxford University Press.

PIACENTINI, V.Q., A. ALEIXO, C.E. AGNE, G.N. MAURICIO, J.F. PACHECO, G.A. BRAVO, G.R.R. BRITO, L.N. NAKA, F. OLMOS, S. POSSO, L.F. SILVEIRA, G.S. BETINI, E. CARRANO, I. FRANZ, A.C. LEES, L.M. LIMA, D. PIOLI, F. SCHUNCK, F.R. AMARAL, G.A. BENCKE, M. COHN-HAFT, L.F.A. FIGUEIREDO, F.C. STRAUBE & E. CESARI. (2015). Annotated checklist of the birds of Brazil by the Brazilian Ornithological Records Committee / Lista comentada das aves do Brasil pelo Comitê Brasileiro de Registros Ornitológicos. Revista Brasileira de Ornitologia 23(2): 91-298.

REMSEN, J. V. JR.; ARETA J. I.; CADENA, C. D.; JARAMILLO, A.; NORES, M; PACHECO, J. F.; PÉREZ-EMÁN, J.; ROBBINS, M. B.; STILES, F. G.; STOTZ, D. F. & ZIMMER K. J. Version 30 July 2015. A classification of the bird species of South America. American Ornithologists' Union. http://www.museum.lsu.edu/~Remsen/SACCBaseline.html

REYNOLDS, R. T., J. M. SCOTT, and R. A. NUSSBAUM. 1980. A variable circular-plot method for estimating bird numbers. Condor 82:309-313.

RIDGELY, R. S. & TUDOR, G. 2009. Field guide to the songbirds of South America: the passerines. Austin, University of Texas Press. 736p.

SCHERER-NETO, P., F.C. STRAUBE, E. CARRANO & A. URBEN-FILHO. (2011). Lista das aves do Paraná: edição comemorativa do Centenário da Ornitologia Paranaense. Curitiba: Hori Consultoria Ambiental. Hori Cadernos Técnicos nº 2.

SICK, H. 1997. Ornitologia Brasileira. 2ed. Rio de Janeiro, Nova Fronteira. 912p.

SILVEIRA NETO, S., O. NAKANO, D. BARBIN & N.A. VILLA NOVA. 1976. Manual de ecologia dos insetos. Piracicaba, Ed. Agronômica Ceres, 419p.

TÓTHMÉRÉSZ, B. 1995. Comparison of different methods for diversity ordering. J. Veg. Sci. 6(2):283-290.

VOLPATO, G. L.; GIAQUINTO, P. C.; FERNANDES-DE-CASTILHO M.; BARRETO, R. E. & GONÇALVES-DE-FREITAS, E. (2009) Animal Welfare: from concepts to reality. Oecologia Brasiliensis, 13(1), 5-15.

WIKIAVES. 2020. Wikiaves - A Enciclopédia das Aves do Brasil. Espécies registradas no município de Telêmaco Borba. Disponível em: http://www.wikiaves.com/. Acesso em 20 de fevereiro de 2020.

WRIGHT, T. F., TOFT, C. A., ENKERLIN-HOEFLICH, E., GONZALEZ-ELIZONDO, J., ALBORNOZ, M., RODRIGUEZ-FERRARO, A., ROJAS-SUAREZ, F., SANZ, V., TRUJILLO, A., BEISSINGER, S. R., BEROVIDES, A. V., GALVEZ, X. A., BRICE, A. T., JOYNER, K., EBERHARD J. R., GILARDI, J., KOENIG S. E., STOLESON, S., MARTUSCELLI, P., MEYERS, J. M., RENTON, K., RODRIGUEZ, A. M., SOSAASANZA, A. C., VILELLA, FJ., & WILEY, J. W. 2001. Nest poaching in neotropical parrots. Conservation Biology, 15: 710-720.

WUNDERLE, J.M., JR. 1994. Métodos para contar aves terrestres del Caribe. General Technical Report SO-100. U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station, New Orleans, Louisiana.

XENO-CANTO. 2020. Xeno-canto America – Bird sounds from the Americas. Disponível em: http://www.xeno-canto.org/. Acesso em 20 de fevereiro de 2020.

Klabin Celulose S.A.

Programa de Monitoramento da Avifauna na Pequena Central Hidrelétrica Salto Mauá Klabin Celulose S.A.

SUMÁRIO

1.	DADOS DO EMPREENDEDOR	1-6
2.	DADOS DA EMPRESA RESPONSÁVEL PELO ESTUDO	2-6
3.	EQUIPE TÉCNICA	3-7
4.	INTRODUÇÃO	4-8
4.1	. Localização do Empreendimento	4-8
5.	OBJETIVOS	5-10
6.	CAMPANHAS AMOSTRAIS	6-10
7.	METODOLOGIAS DE AMOSTRAGEM E COLETA	7-10
7.1	. Dados Secundários	7-10
7.2	. Dados Primários	7-11
8.	RESULTADOS	8-18
8.1	. Análise qualitativa	8-18
8.2	. Análises quantitativas	8-44
9.	CONSIDERAÇÕES FINAIS	9-53
10	REFERÊNCIAS BIBLIOGRÁFICAS	10-54

LISTA DE FIGURAS

Figura 1. Localização da PCH Salto Mauá, em relação ao Rio Tibagi e as cidades de
Ortigueira e Telêmaco Borba4-9
Figura 2. Material utilizado para visualização, identificação e registro da avifauna presente
nas áreas de influência da PCH Salto Mauá 7-12
Figura 3. Biólogo realizando a anotação referente a avistagem de aves e gravação da
vocalização, no levantamento em transectos7-12
Figura 4. A= Representação esquemática do método de Ponto de Contagem com Raio Fixo
(Fixed-Radius Point Counts) e B= Observador realizando a contagem em um dos pontos
fixos das Áreas de Monitoramento
Figura 5. Mapa da área de monitoramento com a representação dos oito pontos de
contagem com raio fixo e dos transectos do Programa de Monitoramento da Avifauna na
Pequena Central Hidrelétrica (PCH) Salto Mauá da Klabin Celulose S.A 7-15
Figura 6. Número de espécies registradas nos levantamentos de dados secundários e
primários durante o Programa de Monitoramento da Avifauna na Pequena Central
Hidrelétrica Salto Mauá 8-19
Figura 7. Aves registradas durante o Programa de Monitoramento da Avifauna na Pequena
Central Hidrelétrica (PCH) Salto Mauá Klabin Celulose S.A. A) <i>Cyanoloxia glaucocaerulea</i>
(azulinho); B) Saltator similis (trinca-ferro); C) Pipraidea melanonota (saíra-viúva); D)
<i>Nyctidromus albicollis</i> (bacurau); E) <i>Hirundinea ferruginea</i> (gibão-de-couro); F) <i>Psittacara</i>
leucophtalmus (periquitão-maracanã); G) Sporophila lineola (bigodinho); H) Cyanocorax
chrysops (gralha-picaça); I) <i>Penelope obscura</i> (jacuaçu); J) <i>Machetornis rixosa</i> (suiriri-
cavaleiro); K) Colaptes campestris (pica-pau-do-campo); L) Colonia colonus (viuvinha).
Figura 8. Espécies endêmicas registradas durante as campanhas de monitoramento da
avifauna nas áreas de monitoramento da PCH Salto Mauá. A) <i>Todirostrum poliocephalum</i> ,
B) Attila rufus, C) Brotogeris tirica, D) Tangara cyanocephala
Figura 9. Índice Pontual de Abundância (IPA) de cada espécie registrada durante as três
campanhas (julho de 2019, fevereiro de 2020 e agosto de 2020) de monitoramento da
avifauna na PCH Salto Mauá 8-48
Figura 10. Espécies com maiores valores de IPA registradas nas três campanhas semestrais
(julho de 2019 a agosto de 2020) do Monitoramento da Avifauna na Pequena Central
Hidrelétrica (PCH) Salto Mauá da Klabin Celulose S.A., em ordem decrescente 8-49
Figura 11. FR (Frequência Relativa) em porcentagem das espécies registradas nas três
campanhas semestrais (julho de 2019 a agosto de 2020) do Monitoramento da Avifauna

na Pequena Central Hidrelétrica (PCH) Salto Mauá da Klabin Celulose S.A., em	ordem
decrescente	8-50
Figura 12. Perfil de Diversidade utilizando a Série de Rényi durante as três cam	panhas
amostrais (julho/2019, fevereiro/2020 e agosto/2020) do Programa de Monitoramo	ento da
Avifauna na Pequena Central Hidrelétrica Salto Mauá	8-52
Figura 13. Curva de rarefação realizada pelo software R Statistics	8-53

LISTA DE TABELAS

Tabela 1. Coordenadas UTM dos Pontos de Contagem com Raio Fixo do Programa de
Monitoramento da Avifauna na Pequena Central Hidrelétrica (PCH) Salto Mauá da Klabin
Celulose S.A 7-14
Tabela 2. Espécies da avifauna de provável ocorrência e registradas no Monitoramento da
Avifauna na Pequena Central Hidrelétrica (PCH) Salto Mauá da Klabin Celulose S.A Lista
elaborada a partir de literatura consultada e a partir dos registros obtidos durante as
campanhas realizadas nos monitoramentos pretéritos (na Terra Indígena Mococa – 2014
a 2017 e na Unidade PUMA da Klabin Celulose - 2013 a 2017). Os registros deste programa
de monitoramento referem-se as campanhas atuais (julho/2019; fevereiro/2020;
agosto/2020). São apresentados os nomes dos táxons, nome comum, tipo de registro e
status de conservação de cada espécie 8-20
Tabela 3. Espécies da avifauna endêmicas de provável ocorrência para a área de estudo e
registradas durante as três campanhas de monitoramento da avifauna na PCH Salto Mauá
(julho/2019, fevereiro/2020 e agosto/2020)
Tabela 4. Número de indivíduos de cada espécie registrada nas três campanhas amostrais
(julho/2019, fevereiro/2020 e agosto/2020) do Programa de Monitoramento da Avifauna
na Pequena Central Hidrelétrica (PCH) Salto Mauá da Klabin Celulose S.A 8-44
Tabela 5. Dados Climatológicos referente as campanhas amostrais realizadas nos anos de
2019 e 2020 para o município de Telêmaco Borba, PR
Tabela 6. Índices de Diversidade calculados com o auxílio do <i>software</i> PAST para as três
campanhas amostrais (julho/2019, fevereiro/2020 e agosto/2020) onde o método
quantitativo foi aplicado 8-51

1. DADOS DO EMPREENDEDOR

Razão Social: KLABIN CELULOSE S.A. Nome Fantasia: KLABIN CELULOSE S.A. Número do CNPJ: 89.637.490/0165-72

Endereço: Fazenda Apucarana Grande, s/n, Km 2, Bairro Distrito de Natingui,

Ortigueira/PR; CEP: 84.350-000

CEP 84.350-000

Telefone:

Home page: www.klabin.com.br

2. DADOS DA EMPRESA RESPONSÁVEL PELO ESTUDO

Razão Social: ACQUAPLAN Tecnologia e Consultoria Ambiental Ltda.

Nome Fantasia: ACQUAPLAN CNPJ: 06.326.419/0001-14

Cadastro Técnico Federal - IBAMA: 658878

Registro CREA-SC: 074560-2

Endereço para Correspondência: Av. Rui Barbosa, 372, apto. 103, Praia dos Amores,

Balneário Camboriú - SC

CEP: 88331-510

Telefone: (47) 3366-1400

Fax: (47) 3366-7901

E-Mail: acquaplan@acquaplan.net
Home page: www.acquaplan.net
Responsável: Fernando Luiz Diehl

3. EQUIPE TÉCNICA

NOME	FORMAÇÃO	ÁREA DE ATUAÇÃO	REGISTRO IBAMA	REGISTRO PROFISSIONAL
Josiane Rovedder, MSc.	Bióloga	Coordenação/Meio Biótico/Fauna Terrestre/Avifauna	355459	CRBio 45049-03/D
Bruna Vivian Brites, MSc.	Bióloga	Apoio/Meio Biótico/Fauna Terrestre/Revisão Geral	4083303	CRBio 63402-03/D
Reinaldo Dutra Junior	Biólogo	Apoio/Meio Biótico/Avifauna	7222002	CRBio 108389-07/D
Jean Berná Paim	Oceanógrafo	Geoprocessamento	554494	AOCEANO 2124

4. INTRODUÇÃO

A biodiversidade de aves brasileiras é uma das mais ricas do mundo, contando atualmente com 1.919 espécies registradas em seu território (PIACENTINI *et al.*, 2015). O Brasil, juntamente com o Peru e Colômbia, são os países com maior riqueza de aves no mundo (REMSEN *et al.*, 2016). O Brasil é também o país com maior número de espécies globalmente ameaçadas de extinção (BIRDLIFE INTERNATIONAL, 2017). A perda, degradação e fragmentação de *habitats* e a caça especialmente para o comércio ilegal – são as principais ameaças às aves brasileiras (MARINI & GARCIA, 2005).

A fauna ornitológica do Estado do Paraná é composta por 744 espécies (SCHERER-NETO et al., 2011), o que corresponde a 38,8% a avifauna conhecida para o território brasileiro (PIACENTINI et al., 2015), dando uma ideia muito satisfatória da diversidade da avifauna estadual. A riqueza elevada é proporcionada, principalmente pela diversidade de fisionomias vegetais: Floresta Ombrófila Densa, Floresta Ombrófila Mista, Floresta Estacional Semidecidual, Campos Naturais e Cerrado, além de ambientes aquáticos diversos (SCHERER-NETO et al., 2011).

A seguir estão apresentados os objetivos deste monitoramento, bem como os métodos empregados e resultados obtidos nas três campanhas (julho de 2019, fevereiro de 2020 e agosto de 2020) realizadas no Monitoramento da Avifauna, nas áreas sob influência da Pequena Central Hidrelétrica (PCH) Salto Mauá da Klabin Celulose S.A..

4.1. Localização do Empreendimento

A Pequena Central Hidrelétrica Salto Mauá está localizada no rio Tibagi, na divisa dos Municípios de Telêmaco Borba e Ortigueira (Figura 1). Foi licenciada com objetivo de atender às necessidades das indústrias da Klabin e de alguns núcleos habitacionais da região, como Lagoa e Harmonia, na Fazenda Monte Alegre.

O reservatório da PCH possui uma área equivalente a 7,64 hectares, limitada a norte pela sua barragem e a sul pela barragem da Usina Hidrelétrica Mauá. A bacia hidrográfica que drena diretamente para o reservatório da PCH Salto Mauá corresponde a uma área de 351 hectares, algo em torno de 0,014% da bacia do rio Tibagi.

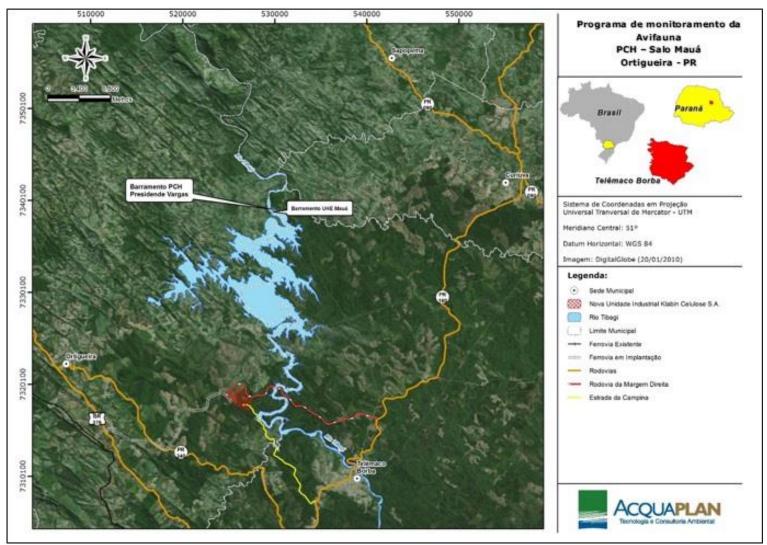


Figura 1. Localização da PCH Salto Mauá, em relação ao Rio Tibagi e as cidades de Ortigueira e Telêmaco Borba.

5. OBJETIVOS

Os objetivos do presente Programa de Monitoramento da Avifauna são:

✓ Identificação e caracterização da avifauna das áreas sob influência do reservatório da PCH;

- ✓ Atualização das informações sobre ocorrência de espécies raras, endêmicas e ameaçadas de extinção;
- ✓ Acompanhamento da dinâmica populacional de tais grupos ao longo do tempo, com a finalidade de verificar impactos e propor diretrizes conservacionistas.

6. CAMPANHAS AMOSTRAIS

As campanhas amostrais do presente Programa de Monitoramento ocorreram em julho de 2019, fevereiro de 2020 e a última ocorreu no mês de agosto de 2020. Todas as campanhas tiveram duração de três dias. As campanhas para amostragem da avifauna na PCH Salto Mauá possuem periodicidade semestral e são executadas concomitantemente às campanhas de Monitoramento da Ictiofauna, que já vem sendo executada pela ACQUAPLAN desde 2015.

7. METODOLOGIAS DE AMOSTRAGEM E COLETA

As metodologias aplicadas durante as amostragens nas áreas Monitoramento da Avifauna na Pequena Central Hidrelétrica (PCH) Salto Mauá da Klabin Celulose estão descritas a seguir.

7.1. Dados Secundários

As Consultas Bibliográficas (BB) têm como alvo principal a revisão de dados da literatura disponíveis em trabalhos realizados na região e, a partir disto, listar as espécies de aves com possível ocorrência nas áreas de influência do empreendimento. Dentre os trabalhos consultados destacam-se Rocha *et al.* (2003), Carrano (2006), Volpato *et al.* (2009) e Hori (2011), além de registros de ocorrência do site WikiAves (http://www.wikiaves.com.br/). A partir destes dados foi gerada uma lista das aves com provável ocorrência para as áreas de influência da Pequena Central Hidrelétrica (PCH) Salto Mauá da Klabin Celulose S.A.

Foram consultados estudos sobre a avifauna elaborados para o empreendimento e suas áreas de influência para compor a lista de espécies de provável ocorrência. Destaca-se que a ACQUAPLAN realizou dois Programas de Monitoramento da Avifauna na região de Ortigueira, contemplando quatro anos de levantamentos 1) na Terra Indígena Mococa e 2) na Unidade PUMA da Klabin Celulose. Os resultados obtidos nesses dois monitoramentos também serviram como uma base de dados da avifauna da região.

O grau de ameaça de extinção é baseado na Lista das Espécies da Fauna Brasileira Ameaçadas de Extinção (Portarias MMA Nº 444/2014), Lista das Espécies da Fauna Ameaçadas de Extinção no Paraná (MIKICH *et al.*, 2004) e IUCN *Red List of Threatened Species* (2020).

7.2. Dados Primários

Para a obtenção dos dados primários foram realizadas campanhas com duração de três dias que foram iniciadas ao amanhecer (05 h às 11 h) e encerradas ao anoitecer (15 h às 19 h). São esses os horários que as aves se encontram em maior atividade de forrageio e delimitação de território (WUNDERLE, 1994).

A observação da avifauna foi realizada com o auxílio de um binóculo Nikon® 8 X 42, e sempre que possível as espécies foram registradas com uma câmera fotográfica Nikon® P500 (36 x de zoom óptico) e Canon® Powershot Hs 60x, e com um gravador de áudio digital SONY® IC RECORDER – UX200. Os indivíduos foram listados em uma caderneta de campo, para posterior tabelamento em planilha digital, e os locais de observação georreferenciados com um GPS Garmim® Etrex 10 (Figura 2).

A determinação das espécies foi realizada, predominantemente em campo ou, posteriormente com auxílio de guias de identificação (PERLO, 2009 e RIDGELY & TUDOR, 2009) ou guias sonoros (VIELLIARD, 1995a e 1995b; GONZAGA & CASTIGLIONI, 2001 e ISLER & WHITNEY, 2002). Também foram realizadas consultas nos *websites* Xeno-Canto (http://www.xeno-canto.org) e WikiAves (http://www.wikiaves.com.br). A ordem sistemática, nomenclatura e nomes populares seguem a Lista comentada das Aves do Brasil pelo Comitê Brasileiro de Registros Ornitológicos (PIACENTINI *et al.*, 2015).

Figura 2. Material utilizado para visualização, identificação e registro da avifauna presente nas áreas de influência da PCH Salto Mauá.

a) Levantamento Qualitativo: Censo por Transecção

As amostragens qualitativas são realizadas com a intenção de identificar todas as espécies que utilizam a áreas de estudo. Para a obtenção destas informações foram realizadas observações percorrendo os transectos pré-definidos. Nesses transectos o ornitólogo realiza o levantamento qualitativo das espécies avistadas (Figura 3).

Todas as espécies ativas avistadas e/ou escutadas foram identificadas no nível de espécie, fotografadas quando possível e registradas em caderneta de campo para posterior tabelamento em planilha eletrônica.

Figura 3. Biólogo realizando a anotação referente a avistagem de aves e gravação da vocalização, no levantamento em transectos.

b) Pontos de Contagem com Raio Fixo (Fixed-Radius Point Counts)

Através dos levantamentos quantitativos é possível calcular o Índice Pontual de Abundância (IPA), Diversidade, Equitabilidade e Frequência Relativa. Para isso, o número de indivíduos de cada espécie identificada é utilizado como descritor analítico. Comparar a composição das comunidades em diferentes locais e, por logos períodos, também é possível com a utilização desses métodos quantitativos. O cálculo do IPA consiste no número total de contatos de uma dada espécie, dividido pelo número total de pontos amostrados em uma determinada área (ALEIXO, 1999).

Para a obtenção de dados quantitativos foi utilizada uma metodologia descrita por Reynolds et al. (1980) e Wunderle (1994) chamada de Pontos de Contagem com Raio Fixo (*Fixed-Radius Point Counts*) (Figura 4 A). Essa metodologia, descrita pelos autores supracitados, prediz a identificação da espécie e a contagem de todos os indivíduos ativos, registrados visualmente e/ou acusticamente, dentro de um raio fixo durante um determinado tempo. O raio fixo padrão recomendado é de 25 m de distância do ponto central onde se localiza o observador e o tempo determinado em cada ponto é de 10 minutos (REYNOLDS *et al.*, 1980 e WUNDERLE, 1994).

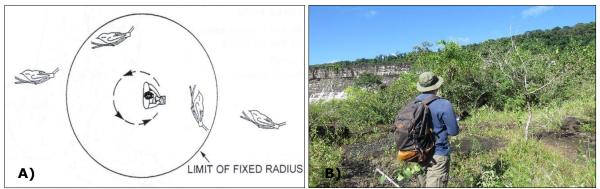


Figura 4. A= Representação esquemática do método de Ponto de Contagem com Raio Fixo (*Fixed-Radius Point Counts*) e B= Observador realizando a contagem em um dos pontos fixos das Áreas de Monitoramento.

As coordenadas geográficas dos Pontos de Contagem em Raio Fixo estão apresentadas na Tabela 1 e no mapa da Figura 5. O mesmo mapa também apresenta a representação gráfica dos transectos realizados para avistagem da avifauna nas áreas adjacentes à PCH Salto Mauá da Klabin Celulose S.A..

Tabela 1. Coordenadas UTM dos Pontos de Contagem com Raio Fixo do Programa de Monitoramento da Avifauna na Pequena Central Hidrelétrica (PCH) Salto Mauá da Klabin Celulose S.A.

Ponto	Coordenada (UTM SIRGAS2000/22J)			
	x	Y		
1	529548	7339068		
2	529482	7339175		
3	529511	7339312		
4	529444	7339466		
5	529396	7339573		
6	529758	7339227		
7	529404	7339736		
8	529432	7339921		

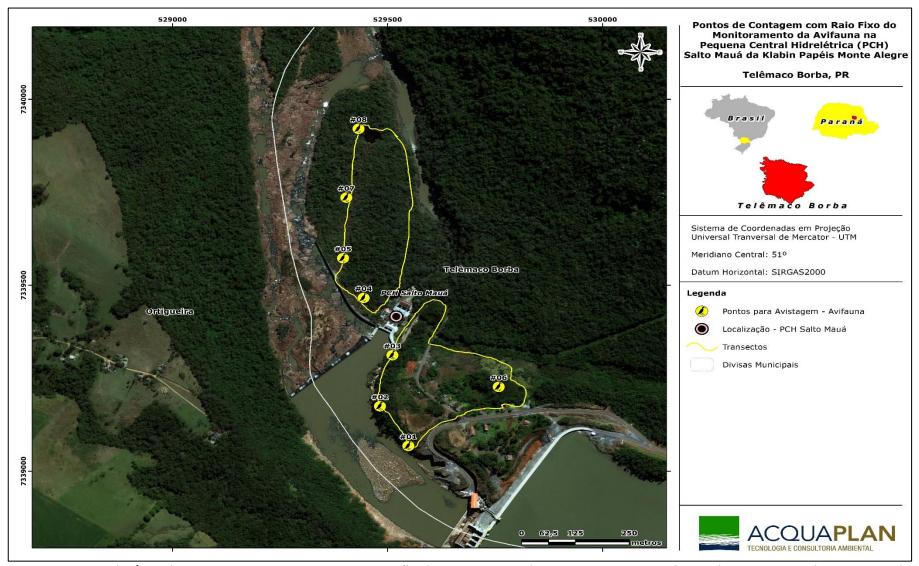


Figura 5. Mapa da área de monitoramento com a representação dos oito pontos de contagem com raio fixo e dos transectos do Programa de Monitoramento da Avifauna na Pequena Central Hidrelétrica (PCH) Salto Mauá da Klabin Celulose S.A..

c) Análise de Dados

Com os dados obtidos pelo levantamento quantitativo, foi possível calcular o **Índice Pontual de Abundância** (*IPA*) e a **Frequência Relativa** (*FR*) de cada espécie contabilizada:

$$IPA = Ci/P$$

Onde *Ci* é o número total de contatos obtidos com a espécie em questão (número de pontos em que a espécie apareceu) e *P* é o número de pontos de contagem realizados na amostragem. Este índice é utilizado a fim de minimizar o efeito de espécies gregárias (espécies que vivem em grandes bandos), mostrando assim a utilização do ambiente como um todo.

$$FR = \left(\frac{Ni}{Nt}\right) \times 100$$

Onde **Ni** é o número de indivíduos da espécie em questão e **Nt** é o número de indivíduos de todas as espécies contabilizadas, identificando as espécies dominantes, raras e intermediárias que ocupam a área de monitoramento.

A fim de comparar áreas amostradas para o presente estudo, foram realizados cálculos de índices de Diversidade, gerados através do *software* PAST versão 2.14 (HAMMER *et al.*, 2001). São eles:

- O **Índice de Shannon**, dá um maior peso para as espécies raras (MAGURRAN, 1988), quanto maior for o valor de H', maior será a Diversidade da população em estudo. Este índice pode expressar Riqueza e Uniformidade. Este índice é obtido pela equação:

$$H' = -\sum_{i=1}^{S} Pi \ln pi$$

Onde S é o número de espécies, pi é a proporção da espécie i, estimada como ni/N, onde ni é a medida de importância da espécie i (número de indivíduos, biomassa), e N é o número total de indivíduos. Na prática o valor máximo de H' é ln S, e o mínimo é ln [N] (N - S)].

- O **Índice de Simpson**, pertence ao grupo das medidas de Dominância, uma vez que dá mais peso para as espécies mais comuns. Ele mede a probabilidade de dois indivíduos,

selecionados ao acaso na amostra, pertencer à mesma espécie (BROWER & ZARR, 1984). O valor estimado de Simpson varia de 0 (zero) a 1 (um), sendo que para valores próximos de um, a Diversidade é considerada maior. Este índice é obtido pela equação abaixo:

$$D = \sum_{i=1}^{S} pi^2$$

Onde pi é a proporção da espécie i na comunidade, e S é o número de espécies.

- O índice de **Equitabilidade de Pielou (J')** pertence ao intervalo [0,1], onde 1 representa a máxima Diversidade, ou seja, todas as espécies são igualmente abundantes (Ludwig & Reynolds, 1988).
- Alguns índices simples são utilizados como medidas de Riqueza de espécies, incluindo o índice de **Margalef** (D_{Mg}) e o de **Menhinick** (D_{Mn}). Estes índices combinam o número de espécies registrado (S) com o número total de indivíduos (N), sendo que quando Margalef apresentar valores maiores do que 5, considera-se a população com alta Diversidade.

$$D_{Mg} = \frac{(S-1)}{lnN}$$
$$D_{Mn} = \frac{S}{\sqrt{N}}$$

- **Perfil de Diversidade de Rènny**: Embora aparentemente totalmente diferentes, os valores de Riqueza de espécies, Índice de Shannon (H´) e Índice de Simpson diferem basicamente no peso em que se dá para espécies raras. No caso de Riqueza de espécies, o peso é máximo: espécies raras possuem o mesmo peso de espécies comuns. No caso do Índice de Shannon, o peso é intermediário. No caso do Índice de Simpson, o peso de espécies raras é pequeno. É possível generalizar esta ideia usando Perfis de Diversidade (*Diversity Profiles*) (MELO, 2008). Uma das primeiras generalizações é a Série de Rényi, dada por:

$$H_{\alpha} = (\ln(P1^{\alpha} + P2^{\alpha} \dots + Ps^{\alpha}))/(1 - \alpha)$$

Onde, $H\alpha$ é o valor do índice de Diversidade para o parâmetro α ($\alpha \ge 0$, $\alpha \ne 1$) e p1, p2, ..., pn são proporções de indivíduos das espécies 1, 2, ... S. Quando $\alpha = 0$, $N_0 = n$ úmero de espécies, ou seja, da maior importância ao parâmetro Riqueza e quando α tende ao infinito da maior importância ao parâmetro Equabilidade. Assim, podemos calcular índices de

Diversidade para $\alpha=0,\,1,\,2,\,3,\,...$ Eles funcionam de maneira muito semelhante aos Índices de Shannon e Simpson. Quando há sobreposição das curvas, a interpretação de qual comunidade é mais diversa depende de qual índice é levado em consideração. Visto a ausência de um critério que tornasse esta decisão objetiva, Tóthmérész (1995) sugere que as duas comunidades são não-comparáveis, ou não-separáveis segundo Liu et al. (2007). Conforme as abundâncias entre as espécies vão sendo alteradas de modo a haver menor Equabilidade, a curva tenderá a ficar mais inclinada (ou seja, com valores mais variados) (HILL, 1973).

Para testar a significância estatística do perfil obtido, foi utilizado o teste de Kruskal-Wallis, realizado com o software PAST versão 2.14. O teste foi utilizado para a análise de variância das médias dos dados de abundância, riqueza, diversidade e dominância de espécies obtidas durantes as três campanhas amostrais.

O teste de Kruskal-Wallis é um método não-paramétrico para testar amostras provenientes da mesma distribuição. É uma análise simples de variância (ANOVA) utilizado para comparar amostras. Quando o teste conduz resultados significativos, pelo menos uma das amostras é diferente das outras amostras (WAYNE, 1990).

- Curva de rarefação individual: Para verificar a suficiência amostral obtida nas áreas analisadas/monitoradas, foi aplicada a análise estatística de "Curva de Rarefação Individual", descrita por Krebs (1989). Este método utiliza uma matriz de presença e ausência das espécies registradas nas amostragens quantitativas. O número de espécies registradas é influenciado pelo número de indivíduos encontrados e número de amostras realizadas. De acordo com Goetelli & Colwell (2001), para minimizar este problema, é interessante ilustrar o aumento do número de espécies através de uma curva de rarefação. De forma simplificada, a Curva de Rarefação é produzida por repetidas re-amostragens ao acaso.

8. RESULTADOS

8.1. Análise qualitativa

Durante as três campanhas realizadas no Programa de Monitoramento da Avifauna, na PCH Salto Mauá foram registradas 93 espécies de aves, referente aos meses de julho de 2019 (campanha 1), fevereiro de 2020 (campanha 2) e agosto de 2020 (campanha 3). Este resultado representa 21% do total de espécies levantadas para a região de estudo,

conforme dados secundários – 443 - espécies de provável ocorrência, onde 47 encontramse em algum grau de ameaça (Figura 6). A Tabela 2 apresenta as espécies de provável ocorrência para a região de estudo, bem como as espécies registradas durante os monitoramentos da Acquaplan na região de estudo, ou seja, no monitoramento na Terra Indígena Mococa (2014 a 2017), na Unidade PUMA da Klabin Celulose (2013 a 2017) e no monitoramento atual, nas áreas de influência da PCH Salto Mauá (julho/2019, fevereiro/2020 e agosto/2020).

Das 93 espécies da avifauna registradas nas três campanhas do presente monitoramento, nenhuma apresenta algum grau de ameaça de extinção até o momento. A ausência de registros de espécies ameaças não significa que a área não possua potencial para ocorrência dessas espécies, sendo necessárias mais campanhas para determinar tal fator. O registro de espécies ameaçadas de extinção em monitoramentos pretéritos (na Terra Indígena Mococa e na Unidade PUMA) realça a importância de continuar o monitoramento, a fim de encontrar espécies enquadradas em algum grau de ameaça, assim como espécies endêmicas e de interesse conservacionista.

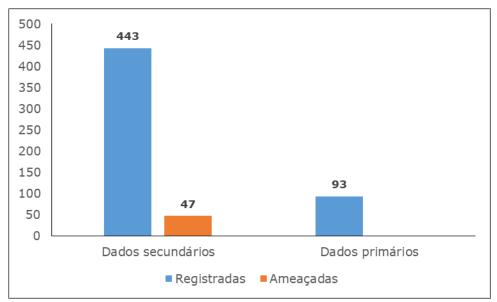


Figura 6. Número de espécies registradas nos levantamentos de dados secundários e primários durante o Programa de Monitoramento da Avifauna na Pequena Central Hidrelétrica Salto Mauá.

Tabela 2. Espécies da avifauna de provável ocorrência e registradas no Monitoramento da Avifauna na Pequena Central Hidrelétrica (PCH) Salto Mauá da Klabin Celulose S.A.. Lista elaborada a partir de literatura consultada e a partir dos registros obtidos durante as campanhas realizadas nos monitoramentos pretéritos (na Terra Indígena Mococa – 2014 a 2017 e na Unidade PUMA da Klabin Celulose – 2013 a 2017). Os registros deste programa de monitoramento referem-se as campanhas atuais (julho/2019; fevereiro/2020; agosto/2020). São apresentados os nomes dos táxons, nome comum, tipo de registro e status de conservação de cada espécie

de cada espécie.	1			4.00114.01.4.01	4.60114.01.4.11	
Táxon	Nome comum	Registro	Status de Conservação	ACQUAPLAN TERRA INDIGENA MOCOCA - 2014 a 2017	ACQUAPLAN PROJETO PUMA – 2013 a 2017	ACQUAPLAN PCH SALTO MAUÁ - 2019 - 2020
Tinamiformes Huxley, 1872						
Tinamidae Gray, 1840						
Tinamus solitarius (Vieillot, 1819)	macuco	BB	NT (IUCN)			
Crypturellus obsoletus (Temminck, 1815)	inhambuguaçu	BB; V; A	LC	x	x	
Crypturellus noctivagus (Wied, 1820)	jaó-do-sul	BB	NT (IUCN); VU (MMA)			
Crypturellus parvirostris (Wagler, 1827)	inhambu-chororó	BB; V; A	LC	X	X	
Crypturellus tautapa	inhambu-chintã	BB; V; A	LC	X	X	
Rhynchotus rufescens (Temminck,					x	
1815)	perdiz	BB; V; A	LC			
Nothura maculosa (Temminck, 1815)	codorna-amarela	BB; V; A	LC		X	
Anseriformes Linnaeus, 1758						
Anatidae Leach, 1820						
Dendrocygna viduata (Linnaeus, 1766)	Irerê	BB	LC			
Cairina moschata (Linnaeus, 1758)	pato-do-mato	BB; V; A	LC		X	
Amazonetta brasiliensis (Gmelin, 1789)	ananaí	BB; V; A	LC		X	
Galliformes Linnaeus, 1758						
Cracidae Rafinesque, 1815						
Penelope superciliaris Temminck, 1815	jacupemba	BB	CR (MMA)			
Penelope obscura Temminck, 1815	jacuguaçu	BB; V; A	LC	X	X	X
Aburria jacutinga (Spix, 1825)	jacutinga	BB	EN (MMA)			
Ortalis squamata (Lesson, 1829)	aracuã-escamoso	BB	LC			
Ortalis guttata (Spix, 1825)	aracuã-pintado	BB	LC			
Odontophoridae Gould, 1844						
Odontophorus capueira (Spix, 1825)	Uru	BB; V; A	LC	X	X	
Procellariiformes Fürbringer, 1888						
Procellariidae Leach, 1820						
Puffinus puffinus (Brünnich, 1764)	pardela-sombria	BB	LC			
Suliformes Sharpe, 1891						
Fregatidae Degland & Gerbe, 1867						

Táxon	Nome comum	Registro	Status de Conservação	ACQUAPLAN TERRA INDIGENA MOCOCA – 2014 a 2017	ACQUAPLAN PROJETO PUMA – 2013 a 2017	ACQUAPLAN PCH SALTO MAUÁ - 2019 - 2020
Fregata magnificens Mathews, 1914	tesourão	BB	LC			
Sulidae Reichenbach, 1849						
Sula leucogaster (Boddaert, 1783)	atobá	BB	LC			
Phalacrocoracidae Reichenbach, 1849						
Nannopterum brasilianus (Gmelin, 1789)	Biguá	BB	LC	х	x	х
Anhingidae Reichenbach, 1849						
Anhinga anhinga (Linnaeus, 1766)	biguatinga	BB	LC			
Pelecaniformes Sharpe, 1891						
Ardeidae Leach, 1820						
Tigrisoma lineatum (Boddaert, 1783)	socó-boi	BB; V; A	LC	X		
Cochlearius cochlearius (Linnaeus,		, ,				
1766)	arapapá	BB	LC			
Nycticorax nycticorax (Linnaeus, 1758)	socó-dorminhoco	BB; V; A	LC		X	X
Nyctanassa violacea (Linnaeus, 1758)	savacu-de-coroa	BB	LC			
Butorides striata (Linnaeus, 1758)	socozinho	BB	LC			
Bubulcus ibis (Linnaeus, 1758)	garça-vaqueira	BB; V; A	LC	X	X	
Ardea cocoi Linnaeus, 1766	garça-moura	BB; V; A	LC		X	X
Ardea alba Linnaeus, 1758	garça-branca	BB; V; A	LC		X	X
Syrigma sibilatrix (Temminck, 1824)	maria-faceira	BB; V; A	LC		X	
Egretta thula (Molina, 1782)	garça-branca-pequena	BB; V; A	LC		X	X
Egretta caerulea (Linnaeus, 1758)	garça-azul	BB	LC			X
Threskiornithidae Poche, 1904						
Phimosus infuscatus (Lichtenstein,						
1823)	tapicuru	BB	LC			
Theristicus caudatus (Boddaert, 1783)	curicaca	BB; V; A	LC	X	X	
Platalea ajaja Linnaeus, 1758	colhereiro	BB	LC			
Mesembrinibis cayennensis	coró-coró	BB; V; A	LC	X	X	
Cathartiformes Seebohm, 1890						
Cathartes aura (Linnaeus, 1758)	urubu-de-cabeça- vermelha	BB; V; A	LC	x	x	X
Cathartes burrovianus Cassin, 1845	urubu-de-cabeça- amarela	BB	LC			
Coragyps atratus (Bechstein, 1793)	urubu	BB; V; A	LC	X	X	X

Táxon	Nome comum	Registro	Status de Conservação	ACQUAPLAN TERRA INDIGENA MOCOCA – 2014 a 2017	ACQUAPLAN PROJETO PUMA – 2013 a 2017	ACQUAPLAN PCH SALTO MAUÁ - 2019 - 2020
Sarcoramphus papa (Linnaeus, 1758)	urubu-rei	BB	LC			
Accipitriformes Bonaparte, 1831						
Pandionidae Bonaparte, 1854						
Pandion haliaetus (Linnaeus, 1758)	águia-pescadora	BB	LC			
Accipitridae Vigors, 1824						
Morphnus guianensis (Daudin, 1800)	uiraçu	BB	NT (IUCN)			
Leptodon cayanensis (Latham, 1790)	gavião-gato	BB; V; A	LC	X	X	
Elanoides forficatus (Linnaeus, 1758)	gavião-tesoura	BB; V; A	LC	X	X	
Elanus leucurus (Vieillot, 1818)	gavião-peneira	BB; V; A	LC	X	Х	
Harpagus diodon (Temminck, 1823)	gavião-bombachinha	BB	LC			
Harpia harpyja (Linnaeus, 1758)	gavião-real	BB	NT (IUCN)			
Accipiter poliogaster (Temminck, 1824)	tauató-pintado	BB; V; A	NT (IUCN)		Х	
Accipiter superciliosus (Linnaeus, 1766)	tauató-passarinho	BB	LC			
Accipiter striatus Vieillot, 1808	tauató-miúdo	BB; V; A	LC	X		
Accipiter bicolor (Vieillot, 1817)	gavião-bombachinha- grande	BB	LC			
Ictinia plumbea (Gmelin, 1788)	Sovi	BB; V; A	LC	X	X	
Geranospiza caerulescens (Vieillot, 1817)	gavião-pernilongo	BB; V; A	LC		x	
Heterospizias meridionalis (Latham, 1790)	gavião-caboclo	BB; V; A	LC		X	
Amadonastur lacernulatus (Temminck, 1827)	gavião-pombo- pequeno	BB	VU (MMA)			
Urubitinga urubitinga (Gmelin, 1788)	gavião-preto	BB	LC			
Rupornis magnirostris (Gmelin, 1788)	gavião-carijó	BB; V; A	LC	X	X	X
Parabuteo leucorrhous (Quoy &	gavião-de-sobre-	,				
Gaimard, 1824)	branco	BB	LC			
Pseudastur polionotus (Kaup, 1847)	gavião-pombo	BB	NT (IUCN)			
Buteo brachyurus Vieillot, 1816	gavião-de-cauda-curta	BB; V; A	LC	X	X	
Geranoaetus albicaudatus (Vieillot,		, ,				
1816)	águia-serrana	BB	LC			
Spizaetus ornatus (Daudin, 1800)	gavião-de-penacho	BB	NT (IUCN)		X	
Spizaetus tyrannus (Wied, 1820)	gavião-pega-macaco	BB; V; A	LC		X	
Spizaetus melanoleucus (Vieillot, 1816)	gavião-pato	BB	LC			
Gruiformes Bonaparte, 1854						

Táxon	Nome comum	Registro	Status de Conservação	ACQUAPLAN TERRA INDIGENA MOCOCA – 2014 a 2017	ACQUAPLAN PROJETO PUMA – 2013 a 2017	ACQUAPLAN PCH SALTO MAUÁ - 2019 - 2020
Aramidae Bonaparte, 1852						
Aramus guarauna (Linnaeus, 1766)	Carão	BB	LC			
Rallidae Rafinesque, 1815						
Rallus longirostris Boddaert, 1783	saracura-matraca	BB	LC			
Aramides cajaneus (Statius Muller, 1776)	saracura-três-potes	ВВ	LC			
Aramides saracura (Spix, 1825)	saracura-do-mato	BB; V; A	LC	Х	Х	X
Laterallus melanophaius (Vieillot, 1819)	sanã-parda	BB	LC			
Laterallus exilis (Temminck, 1831)	sanã-do-capim	BB	LC			
Mustelirallus albicollis (Vieillot, 1819)	sanã-carijó	BB	LC			
Pardirallus nigricans (Vieillot, 1819)	saracura-sanã	BB; V; A	LC	Х		
Pardirallus sanguinolentus (Swainson, 1838)	saracura-do-banhado	BB	LC			
Gallinula galeata (Lichtenstein, 1818)	galinha-d'água	BB; V; A	LC	Х	Х	
Fulica armillata Vieillot, 1817	carqueja-de-bico- manchado	BB	LC			
Charadriiformes Huxley, 1867						
Charadriidae Leach, 1820						
Vanellus chilensis (Molina, 1782)	quero-quero	BB; V; A	LC	Х	Х	X
Charadrius semipalmatus Bonaparte, 1825	batuíra-de-bando	BB	LC			
Charadrius collaris Vieillot, 1818	batuíra-de-coleira	BB	LC			
Recurvirostridae Bonaparte, 1831						
Himantopus melanurus Vieillot, 1817	pernilongo-de-costas- brancas	BB	LC			
Scolopacidae Rafinesque, 1815						
Gallinago paraguaiae (Vieillot, 1816)	narceja	BB; V; A	LC		X	
Limosa haemastica (Linnaeus, 1758)	maçarico-de-bico- virado	BB	LC			
Actitis macularius (Linnaeus, 1766)	maçarico-pintado	BB	LC			
Tringa solitaria Wilson, 1813	maçarico-solitário	BB	LC			
Calidris fuscicollis (Vieillot, 1819)	maçarico-de-sobre- branco	BB	LC			
Jacanidae Chenu & Des Murs, 1854						
Jacana jacana (Linnaeus, 1766)	jaçanã	BB; V; A	LC		X	

Táxon	Nome comum	Registro	Status de Conservação	ACQUAPLAN TERRA INDIGENA MOCOCA – 2014 a 2017	ACQUAPLAN PROJETO PUMA – 2013 a 2017	ACQUAPLAN PCH SALTO MAUÁ - 2019 - 2020
Stercorariidae Gray, 1870						
Laridae Rafinesque, 1815						
Chroicocephalus maculipennis						
(Lichtenstein, 1823)	gaivota-maria-velha	BB	LC			
Larus dominicanus Lichtenstein, 1823	gaivotão	BB	LC			X
Sternidae Vigors, 1825						
Sterna hirundinacea Lesson, 1831	trinta-réis-de-bico- vermelho	ВВ	VU (MMA)			_
Thalasseus acuflavidus (Cabot, 1847)	trinta-réis-de-bando	BB	LC			
Rynchopidae Bonaparte, 1838						
Rynchops niger Linnaeus, 1758	talha-mar	BB	LC			
Columbiformes Latham, 1790						
Columbidae Leach, 1820						
Columbina talpacoti (Temminck, 1810)	rolinha	BB; V; A	LC	X	X	X
Columbina passerina (Linnaeus, 1758)	rolinha-cinzenta	BB	LC			
Columbina squamata	fogo-apagou	BB; V; A	LC	X	X	X
Columbina picui (Temminck, 1813)	rolinha-picuí	BB; V; A	LC	X		
Claravis pretiosa	pararu-azul	BB; V; A	LC	X	X	
Columba livia Gmelin, 1789	pombo-doméstico	BB; V; A	LC		X	
Patagioenas picazuro (Temminck, 1813)	asa-branca	BB; V; A	LC	X	X	X
Patagioenas cayennensis (Bonnaterre,				х	х	X
<u>1792)</u>	pomba-galega	BB; V; A	LC	^	^	^
Patagioenas plumbea (Vieillot, 1818)	pomba-amargosa	BB	LC			X
Zenaida auriculata (Des Murs, 1847)	avoante	BB; V; A	LC	X	X	X
Leptotila verreauxi Bonaparte, 1855	juriti-pupu	BB; V; A	LC	X	X	X
Leptotila rufaxilla (Richard & Bernard,				x	x	
1792)	juriti-de-testa-branca	BB; V; A	LC	^		
Geotrygon montana (Linnaeus, 1758)	Pariri	BB; V; A	LC		X	
Cuculiformes Wagler, 1830						
Cuculidae Leach, 1820						
Piaya cayana (Linnaeus, 1766)	alma-de-gato	BB; V; A	LC	X	X	X
Coccyzus melacoryphus Vieillot, 1817	papa-lagarta	BB; V; A	LC	X	X	
Crotophaga ani Linnaeus, 1758	anu-preto	BB; V; A	LC	X	X	X
Guira guira (Gmelin, 1788)	anu-branco	BB; V; A	LC	X	X	X

Táxon	Nome comum	Registro	Status de Conservação	ACQUAPLAN TERRA INDIGENA MOCOCA – 2014 a 2017	ACQUAPLAN PROJETO PUMA – 2013 a 2017	ACQUAPLAN PCH SALTO MAUÁ - 2019 - 2020
Tapera naevia (Linnaeus, 1766)	Saci	BB; V; A	LC	X	X	
Dromococcyx pavoninus Pelzeln, 1870	peixe-frito-pavonino	BB; V; A	LC	X	X	
Strigiformes Wagler, 1830						
Tytonidae Mathews, 1912						
Tyto furcata (Temminck, 1827)	suindara	BB; V; A	LC	X	X	
Strigidae Leach, 1820						
Megascops choliba (Vieillot, 1817)	corujinha-do-mato	BB; V; A	LC	X	X	
Megascops atricapilla (Temminck, 1822)	corujinha-sapo	BB	LC			
Megascops sanctaecatarinae (Salvin, 1897)	corujinha-do-sul	BB; V; A	LC		x	
Pulsatrix koeniswaldiana	murucututu-de- barriga-amarela	BB; V; A	LC		x	
Pulsatrix perspicillata (Latham, 1790)	murucututu	BB	LC			
Strix hylophila Temminck, 1825	coruja-listrada	BB; V; A	NT (IUCN)		X	
Strix virgata (Cassin, 1849)	coruja-do-mato	BB; V; A	LC	X		
Athene cunicularia (Molina, 1782)	coruja-buraqueira	BB; V; A	LC	X	X	X
Glaucidium brasilianum	caburé	BB; V; A	LC	X	X	
Asio stygius (Wagler, 1832)	mocho-diabo	BB	LC			
Nyctibiiformes Yuri et al. 2013						
Nyctibiidae Chenu & Des Murs, 1851						
Nyctibius griseus (Gmelin, 1789)	urutau	BB; V; A	LC	X	X	
Caprimulgiformes Ridgway, 1881						
Caprimulgidae Vigors, 1825						
Lurocalis semitorquatus (Gmelin, 1789)	Tuju	BB; V; A	LC		X	
Nyctidromus albicollis (Gmelin, 1789)	bacurau	BB; V; A	LC	X	X	X
Hydropsalis torquata (Gmelin, 1789)	bacurau-tesoura	BB; V; A	LC		X	
Hydropsalis forcipata (Nitzsch, 1840)	bacurau-tesourão	BB; V; A	LC	X	X	
Hydropsalis parvula	bacurau-chintã	BB; V; A	LC	X	X	
Podager nacunda (Vieillot, 1817)	corucão	BB	LC			
Apodiformes Peters, 1940						
Apodidae Olphe-Galliard, 1887						
Cypseloides fumigatus (Streubel, 1848)	taperuçu-preto	BB	LC			
Cypseloides senex (Temminck, 1826)	taperuçu-velho	BB	LC			

Táxon	Nome comum	Registro	Status de Conservação	ACQUAPLAN TERRA INDIGENA MOCOCA – 2014 a 2017	ACQUAPLAN PROJETO PUMA – 2013 a 2017	ACQUAPLAN PCH SALTO MAUÁ - 2019 - 2020
Streptoprocne zonaris (Shaw, 1796)	taperuçu-de-coleira- branca	BB; V; A	LC		x	
Chaetura cinereiventris Sclater, 1862	andorinhão-de-sobre- cinzento	BB; V; A	LC		x	
Chaetura meridionalis Hellmayr, 1907	andorinhão-do- temporal	BB; V; A	LC	x	x	
Panyptila cayennensis (Gmelin, 1789)	andorinhão-estofador	BB	LC			
Trochilidae Vigors, 1825						
Ramphodon naevius (Dumont, 1818)	beija-flor-rajado	BB	NT (IUCN)			
Phaethornis squalidus (Temminck, 1822)	rabo-branco-pequeno	BB	LC			
Phaethornis eurynome (Lesson, 1832)	rabo-branco-de- garganta-rajada	BB; V; A	LC	х	х	
Eupetomena macroura (Gmelin, 1788)	beija-flor-tesoura	BB; V; A	LC			X
Aphantochroa cirrochloris (Vieillot,		, ,				
1818)	beija-flor-cinza	BB	LC			
Florisuga fusca (Vieillot, 1817)	beija-flor-preto	BB; V; A	LC	X	X	X
Anthracothorax nigricollis (Vieillot,	beija-flor-de-veste-					
1817)	preta	BB	LC			
Lophornis chalybeus (Temminck, 1821)	topetinho-verde	BB	NT (IUCN)			
Chlorostilbon lucidus (Shaw, 1812)	besourinho-de-bico- vermelho	BB; V; A	LC	x	x	
Thalurania glaucopis (Gmelin, 1788)	beija-flor-de-fronte- violeta	BB; V; A	LC	х	х	x
Stephanoxi loddigesi	beija-flor-de-topete- azul	BB; V; A	LC	х		
Leucochloris albicollis (Vieillot, 1818)	beija-flor-de-papo- branco	BB; V; A	LC	х	х	
Amazilia versicolor (Vieillot, 1818)	beija-flor-de-banda- branca	BB; V; A	LC		х	
Amazilia fimbriata (Gmelin, 1788)	beija-flor-de-garganta- verde	BB; V; A	LC	x	х	
Amazilia láctea	beija-flor-de-peito-azul	BB; V; A	LC	Х	Х	
Heliodoxa rubricauda (Boddaert, 1783)	beija-flor-rubi	BB	LC			

Táxon	Nome comum	Registro	Status de Conservação	ACQUAPLAN TERRA INDIGENA MOCOCA - 2014 a 2017	ACQUAPLAN PROJETO PUMA – 2013 a 2017	ACQUAPLAN PCH SALTO MAUÁ - 2019 - 2020
Glaucis hirsutus (Gmelin, 1788)	balança-rabo-de-bico- torto	BB	LC			
Trogoniformes A. O. U., 1886	torto	DD	LC			
Trogonidae Lesson, 1828						
	surucuá-de-barriga-					
Trogon viridis Linnaeus, 1766	amarela	ВВ	LC			X
Trogon surrucura Vieillot, 1817	surucuá-variado	BB; V; A	LC	Х	Х	Х
Trogon rufus Gmelin, 1788	surucuá-dourado	BB; V; A	LC	Х		
Coraciiformes Forbes, 1844		, ,				
Alcedinidae Rafinesque, 1815						
Megaceryle torquata (Linnaeus, 1766)	martim-pescador- grande	BB; V; A	LC	x	x	x
Chloroceryle amazona (Latham, 1790)	martim-pescador- verde	BB; V; A	LC	x	x	
Chloroceryle aenea (Pallas, 1764)	martim-pescador- miúdo	BB; V; A	LC		x	
Chloroceryle americana (Gmelin, 1788)	martim-pescador- pequeno	BB; V; A	LC	x	x	
Chloroceryle inda (Linnaeus, 1766)	martim-pescador-da- mata	BB	LC			
Momotidae Gray, 1840						
Baryphthengus ruficapillus (Vieillot, 1818)	juruva	BB; V; A	LC		x	
Galbuliformes Fürbringer, 1888						
Notharchus swainsoni (Gray, 1846)	macuru-de-barriga- castanha	ВВ	LC			
Malacoptila striata (Spix, 1824)	barbudo-rajado	BB; V; A	NT (IUCN)	X	X	
Nonnula rubecula (Spix, 1824)	macuru	BB; V; A	LC	X	X	
Piciformes Meyer & Wolf, 1810						
Ramphastidae Vigors, 1825						
Ramphastos vitellinus Lichtenstein,						
1823	tucano-de-bico-preto	BB	VU (IUCN)			
Ramphastos dicolorus Linnaeus, 1766	tucano-de-bico-verde	BB; V; A	LC	X	Х	X
Selenidera maculirostris (Lichtenstein, 1823)	araçari-poca	BB; V; A	LC		x	

Táxon	Nome comum	Registro	Status de Conservação	ACQUAPLAN TERRA INDIGENA MOCOCA – 2014 a 2017	ACQUAPLAN PROJETO PUMA – 2013 a 2017	ACQUAPLAN PCH SALTO MAUÁ - 2019 - 2020
Pteroglossus castinotis Gould, 1834	araçari-castanho	BB	LC			
Pteroglossus bailloni (Vieillot, 1819)	araçari-banana	BB; V; A	NT (IUCN)		X	
Pteroglossus aracari (Linnaeus, 1758)	araçari-de-bico-branco	BB	LC			
Aulacorhyncus whitelianus (Salvin & Goldman, 1882)	tucaninho-verde	ВВ	LC			
Picidae Leach, 1820						
Picumnus cirratus Temminck, 1825	picapauzinho-barrado	BB	LC			
Picumnus temminckii Lafresnaye, 1845	picapauzinho-de- coleira	BB; V; A	LC	x	x	x
Picumnus nebulosus Sundevall, 1866	picapauzinho-carijó	BB	NT (IUCN)			
Melanerpes candidus (Otto, 1796)	pica-pau-branco	BB; V; A	LC	X	X	
Melanerpes flavifrons (Vieillot, 1818)	benedito-de-testa- amarela	BB; V; A	LC		x	
Veniliornis spilogaster (Wagler, 1827)	picapauzinho-verde- carijó	BB; V; A	LC	х	x	X
Piculus flavigula (Boddaert, 1783)	pica-pau-bufador	BB	LC			
Piculus aurulentus (Temminck, 1821)	pica-pau-dourado	BB; V; A	NT (IUCN)	X	X	
Colaptes melanochloros (Gmelin, 1788)	pica-pau-verde- barrado	BB; V; A	LC	x	x	
Colaptes campestris (Vieillot, 1818)	pica-pau-do-campo	BB; V; A	LC	X	X	X
Celeus galeatus (Temminck, 1822)	pica-pau-de-cara- canela	BB; V; A	VU (IUCN)	х		
Celeus flavescens (Gmelin, 1788)	pica-pau-de-cabeça- amarela	BB; V; A	LC	x	x	
Dryocopus lineatus (Linnaeus, 1766)	pica-pau-de-banda- branca	BB; V; A	LC	x	x	
Campephilus robustus (Lichtenstein, 1818)	pica-pau-rei	BB; V; A	LC		x	X
Falconiformes Bonaparte, 1831						
Falconidae Leach, 1820						
Caracara plancus (Miller, 1777)	carcará	BB; V; A	LC	Х	X	X
Milvago chimachima (Vieillot, 1816)	carrapateiro	BB; V; A	LC	X	X	X
Milvago chimango (Vieillot, 1816)	chimango	BB	LC			
Herpetotheres cachinnans (Linnaeus, 1758)	acauã	BB; V; A	LC		x	

Táxon	Nome comum	Registro	Status de Conservação	ACQUAPLAN TERRA INDIGENA MOCOCA - 2014 a 2017	ACQUAPLAN PROJETO PUMA – 2013 a 2017	ACQUAPLAN PCH SALTO MAUÁ - 2019 - 2020
Micrastur ruficollis (Vieillot, 1817)	falcão-caburé	BB; V; A	LC	Х	X	
Micrastur semitorquatus (Vieillot, 1817)	falcão-relógio	BB; V; A	LC	X	X	
Falco sparverius Linnaeus, 1758	quiriquiri	BB; V; A	LC	Х	X	
Falco femoralis Temminck, 1822	falcão-de-coleira	BB	LC			
Psittaciformes Wagler, 1830						
Psittacidae Rafinesque, 1815						
Pyrrhura frontalis (Vieillot, 1817)	Tiriba	BB; V; A	LC	X	X	X
Psittacara leucophthalmus	periquitão-maracanã	BB; V; A	LC	X	Х	X
Aratinga auricapillus	jandaia-de-testa- vermelha	BB; V; A	LC	х		
Forpus xanthopterygius (Spix, 1824)	Tuim	BB; V; A	LC	Х	Х	X
Brotogeris tirica (Gmelin, 1788)	periquito-verde	BB; V; A	LC			X
Pionopsitta pileata	cuiú-cuiú	BB; V; A	LC	Х	Х	
Pionus maximiliani (Kuhl, 1820)	maitaca	BB; V; A	LC	Х	Х	
Amazona brasiliensis (Linnaeus, 1758)	papagaio-de-cara-roxa	BB	VU (IUCN)			
Amazona vinacea	papagaio-de-peito- roxo	BB; V; A	EN(IUCN)		х	
Triclaria malachitacea (Spix, 1824)	sabiá-cica	BB	NT (IUCN)			
Passeriformes Linnaeus, 1758						
Thamnophilidae Swainson, 1824						
Terenura maculata (Wied, 1831)	zidedê	BB	LC			
Myrmotherula unicolor (Ménétriès, 1835)	choquinha-cinzenta	BB	NT (IUCN)			
Formicivora acutirostris (Bornschein, Reinert & Teixeira, 1995)	bicudinho-do-brejo	BB	EN (IUCN)			
Rhopias gularis (Spix, 1825)	choquinha-de- garganta-pintada	ВВ	LC			
Dysithamnus stictothorax (Temminck, 1823)	choquinha-de-peito- pintado	ВВ	NT (IUCN)			
Dysithamnus mentalis (Temminck, 1823)	choquinha-lisa	BB; V; A	LC	х	x	
Herpsilochmus rufimarginatus (Temminck, 1822)	chorozinho-de-asa- vermelha	BB	LC			
Thamnophilus ruficapillus Vieillot, 1816	choca-de-chapéu- vermelho	BB; V; A	LC	х	x	x

Táxon	Nome comum	Registro	Status de Conservação	ACQUAPLAN TERRA INDIGENA MOCOCA – 2014 a 2017	ACQUAPLAN PROJETO PUMA – 2013 a 2017	ACQUAPLAN PCH SALTO MAUÁ - 2019 - 2020
Thamnophilus caerulescens Vieillot,		DD: \/: A	1.0	x	x	x
1816 Hypoedaleus guttatus (Vieillot, 1816)	choca-da-mata chocão-carijó	BB; V; A BB	LC LC			
Batara cinerea (Vieillot, 1819)	matracão	BB; V; A	LC	X	X	
Mackenziaena leachii (Such, 1825)	borralhara-assobiadora	BB; V; A	LC LC	X	^	
Mackenziaena severa (Lichtenstein, 1823)	borralhara	BB; V; A	LC	x	x	
Myrmoderus squamosus (Pelzeln, 1868)	papa-formiga-de-grota	BB	LC			
Myrmeciza loricatus (Lichtenstein, 1823)	formigueiro-assobiador	ВВ	LC			
Biatas nigropectus	papo-branco	BB; V; A	VU (IUCN)	X		
Pyriglena leucoptera (Vieillot, 1818)	papa-taoca-do-sul	BB; V; A	LC	X	X	X
Drymophila malura	choquinha-carijó	BB; V; A	LC	X	X	
Drymophila rubricollis	trovoada-de-bertoni	BB; V; A	LC	X	X	
Drymophila ferruginea (Temminck, _1822)	trovoada	BB; V; A	LC		x	_
Drymophila ochropyga (Hellmayr, 1906)	choquinha-de-dorso- vermelho	ВВ	NT (IUCN)			
Drymophila squamata (Lichtenstein, 1823)	pintadinho	ВВ	LC			
Conopophagidae Sclater & Salvin, 1873						
Conopophaga lineata (Wied, 1831)	chupa-dente	BB; V; A	LC	X	X	
Conopophaga melanops (Vieillot, 1818)	cuspidor-de-máscara- preta	ВВ	VU (MMA)			_
Grallariidae Sclater & Salvin, 1873						
Hylopezus nattereri (Pinto, 1937)	pinto-do-mato	BB	LC			
Grallaria varia	tovacuçu	BB; V; A	LC	X	X	
Rhinocryptidae Wetmore, 1926 (1837)						
Eleoscytalopus indigoticus (Wied, 1831)	macuquinho	BB; V; A	NT (IUCN)	X	X	
Psilorhamphus guttatus (Ménétriès, 1835)	tapaculo-pintado	BB; V; A	NT (IUCN)	x	x	
Formicariidae Gray, 1840						
Formicarius colma Boddaert, 1783	galinha-do-mato	BB; V; A	LC		X	

Táxon	Nome comum	Registro	Status de Conservação	ACQUAPLAN TERRA INDIGENA MOCOCA – 2014 a 2017	ACQUAPLAN PROJETO PUMA – 2013 a 2017	ACQUAPLAN PCH SALTO MAUÁ - 2019 - 2020
Chamaeza campanisona (Lichtenstein,		DD 1/ 4	1.0	х	х	
1823)	tovaca-campainha	BB; V; A	LC			
Scleruridae Swainson, 1827	vira-folha	DD: \/: A	1.6		V	
Sclerurus scansor (Ménétriès, 1835)		BB; V; A	LC LC	X	X	
Geositta cunicularia (Vieillot, 1816)	curriqueiro	DD	LC			
Dendrocolaptidae Gray, 1840						
Dendrocincla turdina (Lichtenstein,	aranası, lisa	BB	1.0			
Sitte compare a grico i comillato (Micillato 1818)	arapaçu-liso		LC LC		V	
Sittasomus griseicapillus (Vieillot, 1818)	arapaçu-verde	BB; V; A		X	X	
Xiphorhynchus fuscus (Vieillot, 1818)	arapaçu-rajado	BB; V; A	LC	X	X	
Lepidocolaptes falcinellus (Cabanis & Heine, 1859)	arapaçu-escamoso-do- sul	BB	LC			
Lepidocolaptes squamata (Lichtenstein,						
1822)	arapaçu-escamado	BB	LC			
Campylorhamphus falcularius	arapaçu-de-bico-torto	BB; V; A	LC	X	X	
Dendrocolaptes platyrostris Spix, 1825	arapaçu-grande	BB; V; A	LC	X	X	
Xiphocolaptes albicollis (Vieillot, 1818)	arapaçu-de-garganta- branca	BB; V; A	LC		x	
Xenopidae Bonaparte, 1854						
Xenops minutus (Sparrman, 1788)	bico-virado-miúdo	BB	LC			
Xenops rutilans Temminck, 1821	bico-virado-carijó	BB; V; A	LC	X	X	
Furnariidae Gray, 1840						
Furnarius rufus (Gmelin, 1788)	joão-de-barro	BB; V; A	LC	X	X	X
Lochmias nematura (Lichtenstein, 1823)	joão-porca	BB; V; A	LC	X	X	
Automolus leucophthalmus (Wied,	barranqueiro-de-olho-			x	x	
_1821)	branco	BB; V; A	LC			
Syndactyla rufosuperciliata	trepador-quiete	BB; V; A	LC	X	X	
Anabacerthia lichtensteini (Cabanis &						
Heine, 1859)	limpa-folha-ocráceo	BB	LC			
Clibanornis dendrocolaptoides	cisqueiro	BB; V; A	NT (IUCN)	X		
Philydor atricapillus (Wied, 1821)	limpa-folha-coroado	BB; V; A	LC		X	
Philydor rufum (Vieillot, 1818)	limpa-folha-de-testa- baia	BB; V; A	LC	x	x	
Philydor lichtensteini	limpa-folha-ocráceo	BB; V; A	LC		Х	

Táxon	Nome comum	Registro	Status de Conservação	ACQUAPLAN TERRA INDIGENA MOCOCA – 2014 a 2017	ACQUAPLAN PROJETO PUMA – 2013 a 2017	ACQUAPLAN PCH SALTO MAUÁ - 2019 - 2020
Cichlocolaptes leucophrus (Jardine &						x
Selby, 1830)	trepador-sobrancelha	BB; V; A	LC			
Certhiaxis cinnamomeus (Gmelin, 1788)	curutié	BB	LC			
Cranioleuca obsoleta	arredio-oliváceo	BB; V; A	LC	X	X	
Clibanornis dendrocolaptoides	cisqueiro	BB; V; A	NT (IUCN)		X	
Leptasthenura setaria	grimpeiro	BB; V; A	NT (IUCN)		X	
Synallaxis ruficapilla Vieillot, 1819	pichororé	BB; V; A	LC	X	X	
Synallaxis cinerascens	pi-puí	BB; V; A	LC	X	X	
Heliobletus contaminatus	trepadorzinho	BB; V; A	LC		X	X
Synallaxis spixi Sclater, 1856	joão-teneném	BB; V; A	LC	X	X	X
Pipridae Rafinesque, 1815						
Manacus manacus (Linnaeus, 1766)	rendeira	BB	LC			_
Ilicura militaris (Shaw & Nodder, 1809)	tangarazinho	BB	LC			
Chiroxiphia caudata (Shaw & Nodder, 1793)	tangará	BB; V; A	LC	x	x	X
Oxyruncidae Ridgway, 1906 (1831)						
Oxyruncus cristatus Swainson, 1821	araponga-do-horto	BB; V; A	LC	Х		
Onychorhynchidae Tello, Moyle, Marchese & Cracraft, 2009						
Myiobius barbatus (Gmelin, 1789)	assanhadinho	BB	LC			
Myiobius atricaudus Lawrence, 1863	assanhadinho-de- cauda-preta	ВВ	LC			
Tityridae Gray, 1840						
Schiffornis virescens (Lafresnaye, 1838)	flautim	BB; V; A	LC	X	X	X
Tityra inquisitor (Lichtenstein, 1823)	anambé-branco-de- bochecha-parda	BB; V; A	LC	x	x	
Tityra cayana (Linnaeus, 1766)	anambé-branco-de- rabo-preto	BB; V; A	LC	х	x	
Pachyramphus castaneus (Jardine & Selby, 1827)	caneleiro	BB; V; A	LC	х	x	X
Pachyramphus polychopterus (Vieillot, 1818)	caneleiro-preto	BB; V; A	LC	х	х	
Pachyramphus viridis	caneleiro-verde	BB; V; A	LC	Х	X	
Pachyramphus validus (Lichtenstein, 1823)	caneleiro-de-chapéu- preto	BB; V; A	LC	х	x	

Táxon	Nome comum	Registro	Status de Conservação	ACQUAPLAN TERRA INDIGENA MOCOCA - 2014 a 2017	ACQUAPLAN PROJETO PUMA – 2013 a 2017	ACQUAPLAN PCH SALTO MAUÁ - 2019 - 2020
Cotingidae Bonaparte, 1849						
Carpornis melanocephala (Wied, 1820)	sabiá-pimenta	BB	VU (IUCN, MMA)			
Pyroderus scutatus (Shaw, 1792)	Pavó	BB; V; A	LC	X		
Procnias nudicollis (Vieillot, 1817)	araponga	BB; V; A	VU (IUCN)		X	
Pipritidae Ohlson, Irestedt, Ericson & Fjeldså, 2013						
Platyrinchidae Bonaparte, 1854						
Platyrinchus mystaceus Vieillot, 1818	patinho	BB; V; A	LC	X	X	
Platyrinchus leucoryphus Wied, 1831	patinho-de-asa- castanha	ВВ	VU (IUCN)			
Rhynchocyclidae Berlepsch, 1907						
Mionectes rufiventris Cabanis, 1846	abre-asa-de-cabeça- cinza	BB; V; A	LC	x	x	
Leptopogon amaurocephalus Tschudi, 1846	cabeçudo	BB; V; A	LC	x	x	
Corythopis delalandi	estalador	BB; V; A	LC	X		
Phylloscartes ventralis (Temminck, 1824)	borboletinha-do-mato	BB; V; A	LC	x	x	
Phylloscartes kronei Willis & Oniki, 1992	maria-da-restinga	BB	VU (IUCN)			
Tolmomyias sulphurescens (Spix, 1825)	bico-chato-de-orelha- preta	BB; V; A	LC	x	x	
Todirostrum poliocephalum (Wied, 1831)	teque-teque	BB; V; A	LC	x	x	x
Todirostrum cinereum (Linnaeus, 1766)	ferreirinho-relógio	BB; V; A	LC		X	
Poecilotriccus plumbeiceps (Lafresnaye, 1846)	tororó	BB; V; A	LC	x	x	
Myiornis auricularis (Vieillot, 1818)	miudinho	BB	LC			
Hemitriccus nidipendulus	tachuri-campainha	BB; V; A	LC	Х		
Hemitriccus diops	olho-falso	BB; V; A	LC	Х	X	
Hemitriccus orbitatus (Wied, 1831)	tiririzinho-do-mato	BB	NT (IUCN)			
Hemitriccus kaempferi (Zimmer, 1953)	maria-catarinense	BB	EN (IUCN); VU (MMA)			
Tyrannidae Vigors, 1825						
Hirundinea ferruginea (Gmelin, 1788)	gibão-de-couro	BB; V; A	LC	X	X	X
Tyranniscus burmeisteri	piolhinho-chiador	BB; V; A	LC		X	
Euscarthmus meloryphus	barulhento	BB; V; A	LC	X		_

Táxon	Nome comum	Registro	Status de Conservação	ACQUAPLAN TERRA INDIGENA MOCOCA – 2014 a 2017	ACQUAPLAN PROJETO PUMA – 2013 a 2017	ACQUAPLAN PCH SALTO MAUÁ - 2019 - 2020
Camptostoma obsoletum (Temminck, 1824)	risadinha	BB; V; A	LC	х	x	X
Elaenia flavogaster (Thunberg, 1822)	guaracava-de-barriga- amarela	BB; V; A	LC	x	x	
Elaenia chilensis	guaracava-de-crista- branca	BB; V; A	LC		x	
Elaenia parvirostris Pelzeln, 1868	tuque-pium	BB; V; A	LC	X	X	X
Elaenia mesoleuca (Deppe, 1830)	tuque	BB	LC			
Elaenia obscura (d'Orbigny & Lafresnaye, 1837)	tucão	BB; V; A	LC	x	x	
Myiopagis caniceps (Swainson, 1835)	guaracava-cinzenta	BB; V; A	LC	Х	X	
Myiopagis viridicata	guaracava-de-crista- alaranjada	BB; V; A	LC	х	x	
Capsiempis flaveola	marianinha-amarela	BB; V; A	LC	Х	X	
Phyllomyias virescens (Temminck, 1824)	piolhinho-verdoso	BB; V; A	LC		x	
Phyllomyias fasciatus (Thunberg, 1822)	piolhinho	BB	LC			
Phyllomyias griseocapilla Sclater, 1862	piolhinho-serrano	BB	NT (IUCN)			
Serpophaga subcristata (Vieillot, 1817)	alegrinho	BB; V; A	LC	X	X	X
Attila rufus (Vieillot, 1819)	capitão-de-saíra	BB	LC			X
Attila phoenicurus	capitão-castanho	BB; V; A	LC		X	
Legatus leucophaius (Vieillot, 1818)	bem-te-vi-pirata	BB; V; A	LC	X	X	
Ramphotrigon megacephalum (Swainson, 1835)	maria-cabeçuda	BB	LC			
Myiarchus swainsoni Cabanis & Heine, 1859	Irré	BB; V; A	LC	x	X	
Myiarchus ferox (Gmelin, 1789)	maria-cavaleira	BB; V; A	LC	X	X	
Sirystes sibilator (Vieillot, 1818)	gritador	BB; V; A	LC	X		X
Pitangus sulphuratus (Linnaeus, 1766)	bem-te-vi	BB; V; A	LC	X	X	X
Machetornis rixosa (Vieillot, 1819)	suiriri-cavaleiro	BB; V; A	LC	X	X	X
Myiodynastes maculatus (Statius Muller, 1776)	bem-te-vi-rajado	BB; V; A	LC	x	x	
Megarynchus pitangua (Linnaeus, 1766)	neinei	BB; V; A	LC	Х	Х	X
Myiozetetes similis (Spix, 1825)	bentevizinho-de- penacho-vermelho	BB; V; A	LC	х	x	x

Táxon	Nome comum	Registro	Status de Conservação	ACQUAPLAN TERRA INDIGENA MOCOCA – 2014 a 2017	ACQUAPLAN PROJETO PUMA – 2013 a 2017	ACQUAPLAN PCH SALTO MAUÁ - 2019 - 2020
Tyrannus melancholicus Vieillot, 1819	suiriri	BB; V; A	LC	Х	X	X
Tyrannus savana Daudin, 1802	tesourinha	BB; V; A	LC	X	X	X
Empidonomus varius (Vieillot, 1818)	peitica	BB; V; A	LC	X	X	X
Conopias trivirgatus (Wied, 1831)	bem-te-vi-pequeno	BB	LC			
Colonia colonus (Vieillot, 1818)	viuvinha	BB; V; A	LC	X	X	X
Myiophobus fasciatus (Statius Muller, 1776)	Filipe	BB; V; A	LC	x	x	
Pyrocephalus rubinus (Boddaert, 1783)	príncipe	BB; V; A	LC		X	
Cnemotriccus fuscatus (Wied, 1831)	guaracavuçu	BB; V; A	LC	Х	Х	
Lathrotriccus euleri (Cabanis, 1868)	enferrujado	BB; V; A	LC	Х	Х	
Contopus cinereus (Spix, 1825)	papa-moscas-cinzento	BB; V; A	LC	Х	X	
Satrapa icterophrys (Vieillot, 1818)	suiriri-pequeno	BB; V; A	LC		Х	
Knipolegus cyanirostris	maria-preta-de-bico- azulado	BB; V; A	LC	х	x	
Xolmis velatus	noivinha-branca	BB; V; A	LC		X	
Muscipipra vetula (Lichtenstein, 1823)	tesoura-cinzenta	BB; V; A	LC	X		
Vireonidae Swainson, 1837						
Cyclarhis gujanensis (Gmelin, 1789)	pitiguari	BB; V; A	LC	X	X	X
Hylophilus poicilotis Temminck, 1822	verdinho-coroado	BB; V; A	LC		X	
Hylophilus pectoralis Sclater, 1866	vite-vite-de-olho-cinza	BB	LC			
Vireo chivi (Vieillot, 1817)	juruviara	BB; V; A	LC	X	X	
Corvidae Leach, 1820						
Cyanocorax caeruleus (Vieillot, 1818)	gralha-azul	BB	LC			
Cyanocorax chrysops	gralha-picaça	BB; V; A	LC	X	X	X
Hirundinidae Rafinesque, 1815						
Pygochelidon cyanoleuca (Vieillot, 1817)	andorinha-pequena- de-casa	BB; V; A	LC	x	x	x
Stelgidopteryx ruficollis (Vieillot, 1817)	andorinha-serradora	BB; V; A	LC	X	X	X
Progne tapera (Vieillot, 1817)	andorinha-do-campo	BB; V; A	LC	X	X	
Progne chalybea (Gmelin, 1789)	andorinha-grande	BB; V; A	LC	Х	X	
Tachycineta leucorrhoa (Vieillot, 1817)	andorinha-de-sobre- branco	BB; V; A	LC	x	x	X
Tachycineta albiventer	andorinha-do-rio	BB; V; A	LC	X	X	X
Riparia riparia (Linnaeus, 1758)	andorinha-do-barranco	BB	LC			

Táxon	Nome comum	Registro	Status de Conservação	ACQUAPLAN TERRA INDIGENA MOCOCA – 2014 a 2017	ACQUAPLAN PROJETO PUMA – 2013 a 2017	ACQUAPLAN PCH SALTO MAUÁ - 2019 - 2020
Hirundo rustica Linnaeus, 1758	andorinha-de-bando	BB	LC			
Alopochelidon fucata (Temminck, 1822)	andorinha-morena	BB	LC			
Petrochelidon pyrrhonota (Vieillot, 1817)	andorinha-de-dorso- acanelado	ВВ	LC			
Troglodytidae Swainson, 1831						
Troglodytes musculus Naumann, 1823	corruíra	BB	LC	X	X	X
Cantorchilus longirostris (Vieillot, 1819)	garrinchão-de-bico- grande	ВВ	LC			
Polioptilidae Baird, 1858						
Ramphocaenus melanurus Vieillot, 1819	chirito	BB	LC			
Polioptila dumicola (Vieillot, 1817)	balança-rabo-de- máscara	ВВ	LC			
Turdidae Rafinesque, 1815						
Turdus flavipes Vieillot, 1818	sabiá-una	BB	LC			
Turdus leucomelas Vieillot, 1818	sabiá-branco	BB; V; A	LC	X	X	X
Turdus rufiventris Vieillot, 1818	sabiá-laranjeira	BB; V; A	LC	X	X	X
Turdus amaurochalinus Cabanis, 1850	sabiá-poca	BB; V; A	LC	Х	X	X
Turdus subalaris	sabiá-ferreiro	BB; V; A	LC	X	X	
Turdus albicollis Vieillot, 1818	sabiá-coleira	BB; V; A	LC	X	X	
Mimidae Bonaparte, 1853						
Mimus saturninus (Lichtenstein, 1823)	sabiá-do-campo	BB; V; A	LC	X	X	
Motacillidae Horsfield, 1821						
Anthus lutescens Pucheran, 1855	caminheiro-zumbidor	BB; V; A	LC		X	
Passerellidae Cabanis & Heine, 1850						
Zonotrichia capensis (Statius Muller, 1776)	tico-tico	BB; V; A	LC	x	x	X
Ammodramus humeralis (Bosc, 1792)	tico-tico-do-campo	BB; V; A	LC		X	
Arremon semitorquatus	tico-tico-do-mato	BB; V; A	LC	Х	X	
Parulidae Wetmore et al. 1947						
Setophaga pitiayumi (Vieillot, 1817)	mariquita	BB; V; A	LC	X	X	X
Geothlypis aequinoctialis (Gmelin, 1789)	pia-cobra	BB; V; A	LC	x	x	
Basileuterus culicivorus (Deppe, 1830)	pula-pula	BB; V; A	LC	X	X	X

Táxon	Nome comum	Registro	Status de Conservação	ACQUAPLAN TERRA INDIGENA MOCOCA – 2014 a 2017	ACQUAPLAN PROJETO PUMA – 2013 a 2017	ACQUAPLAN PCH SALTO MAUÁ - 2019 - 2020
Myiothlypis leucoblephara (Vieillot, 1817)	pula-pula-assobiador	BB; V; A	LC	x	x	
Myiothlypis rivularis (Wied, 1821)	pula-pula-ribeirinho	BB	LC			
Donacobidae Aleixo & Pacheco, 2006						
Donacobius atricapilla (Linnaeus, 1766)	japacanim	BB	LC			
Icteridae Vigors, 1825						
Cacicus chrysopterus (Vigors, 1825)	japuíra	BB; V; A	LC	X	X	X
Cacicus haemorrhous (Linnaeus, 1766)	guaxe	BB; V; A	LC	X	X	
Icterus cayanensis (Linnaeus, 1766)	inhapim	BB	LC			
Icterus pyrrhopterus	encontro	BB; V; A	LC	X	X	
Gnorimopsar chopi (Vieillot, 1819)	pássaro-preto	BB; V; A	LC	X	X	
Chrysomus ruficapillus (Vieillot, 1819)	garibaldi	BB	LC			
Pseudoleistes virescens (Vieillot, 1819)	dragão	BB	LC			
Pseudoleistes guirahuro	chopim-do-brejo	BB; V; A	LC	X	X	
Molothrus bonariensis (Gmelin, 1789)	chupim	BB; V; A	LC		X	
Molothrus oryzivorus	iraúna-grande	BB; V; A	LC	X		
Sturnella superciliaris (Bonaparte, 1850)	polícia-inglesa-do-sul	BB; V; A	LC		x	
Amblyramphus holosericus (Scopoli, 1786)	cardeal-do-banhado	ВВ	LC			
Mitrospingidae Barker, Burns, Klicka, Lanyon & Lovette, 2013						
Orthogonys chloricterus (Vieillot, 1819)	catirumbava	BB	LC			
Thraupidae Cabanis, 1847						
Orchesticus abeillei (Lesson, 1839)	sanhaço-pardo	BB	NT (IUCN)			
Pipraeidea melanonota (Vieillot, 1819)	saíra-viúva	BB; V; A	LC	X	X	X
Pipraeidea bonariensis (Gmelin, 1789)	sanhaço-papa-laranja	BB; V; A	LC	X	X	
Tangara cayana	saíra-amarela	BB; V; A	LC		X	
Tangara seledon (Statius Muller, 1776)	saíra-sete-cores	BB	LC			
Tangara cyanocephala (Statius Muller, 1776)	saíra-militar	BB	LC			
Tangara desmaresti (Vieillot, 1819)	saíra-lagarta	BB	LC			
Tangara sayaca (Linnaeus, 1766)	sanhaço-cinzento	BB; V; A	LC		X	X

Táxon	Nome comum	Registro	Status de Conservação	ACQUAPLAN TERRA INDIGENA MOCOCA – 2014 a 2017	ACQUAPLAN PROJETO PUMA – 2013 a 2017	ACQUAPLAN PCH SALTO MAUÁ - 2019 - 2020
Tangara cyanoptera (Vieillot, 1817)	sanhaço-de-encontro- azul	BB; V; A	NT (IUCN)		x	x
Tangara palmarum (Wied, 1821)	sanhaço-do-coqueiro	BB	LC			
Tangara peruviana (Desmarest, 1806)	saíra-sapucaia	BB	VU (IUCN, MMA)			
Tangara preciosa (Cabanis, 1850)	saíra-preciosa	BB; V; A	LC		X	
Tiaris fuliginosus	cigarra-do-coqueiro	BB; V; A	LC	X		
Conirostrum speciosum (Temminck, 1824)	figuinha-de-rabo- castanho	ВВ	LC	х	x	
Sicalis flaveola (Linnaeus, 1766)	canário-da-terra	BB; V; A	LC	X	X	X
Sicalis luteola	Tipio	BB; V; A	LC		X	
Haplospiza unicolor Cabanis, 1851	cigarra-bambu	BB; V; A	LC		X	
Chlorophanes spiza (Linnaeus, 1758)	saí-verde	BB	LC			
Hemithraupis ruficapilla (Vieillot, 1818)	saíra-ferrugem	BB	LC			
Hemithraupis guira	saíra-de-papo-preto	BB; V; A	LC	X	X	
Volatinia jacarina (Linnaeus, 1766)	Tiziu	BB; V; A	LC	X	X	
Trichothraupis melanops (Vieillot, 1818)	tiê-de-topete	BB; V; A	LC		X	X
Lanio cristatus (Linnaeus, 1766)	tiê-galo	BB	LC			
Tachyphonus coronatus (Vieillot, 1822)	tiê-preto	BB; V; A	LC	X	X	
Ramphocelus bresilius (Linnaeus, 1766)	tiê-sangue	BB	LC			
Tersina viridis (Illiger, 1811)	saí-andorinha	BB; V; A	LC	X	X	
Dacnis nigripes Pelzeln, 1856	saí-de-pernas-pretas	BB	NT (IUCN)			
Dacnis cayana (Linnaeus, 1766)	saí-azul	BB; V; A	LC	X	X	
Coereba flaveola (Linnaeus, 1758)	cambacica	BB; V; A	LC	X	X	X
Sporophila angolensis	Curió	BB; V; A	LC		X	
Sporophila lineola	bigodinho	BB; V; A	LC	X		X
Sporophila plumbea (Wied, 1830)	patativa	BB	LC			
Sporophila frontalis (Verreaux, 1869)	pixoxó	BB	VU (IUCN, MMA)			
Sporophila caerulescens (Vieillot, 1823)	coleirinho	BB; V; A	LC	X	X	X
Embernagra platensis (Gmelin, 1789)	sabiá-do-banhado	BB; V; A	LC		X	
Saltator similis d'Orbigny & Lafresnaye,	Luta as Comme	DD - \/- A	1.0	x	x	x
1837	trinca-ferro	BB; V; A	LC			
Saltator fuliginosus	bico-de-pimenta	BB; V; A	LC	X	Х	
Schistochlamys ruficapillus (Vieillot, 1817)	bico-de-veludo	BB; V; A	LC		X	

Táxon	Nome comum	Registro	Status de Conservação	ACQUAPLAN TERRA INDIGENA MOCOCA – 2014 a 2017	ACQUAPLAN PROJETO PUMA – 2013 a 2017	ACQUAPLAN PCH SALTO MAUÁ - 2019 - 2020
Thlypopsis sórdida	saí-canário	BB; V; A	LC	X	X	
Pyrrhocoma ruficeps	cabecinha-castanha	BB; V; A	LC	X	X	
Coryphospingus cucullatus	tico-tico-rei	BB; V; A	LC	X	X	
Cissopis leverianus	tietinga	BB; V; A	LC	X	X	
Microspingus cabanisi	quete-do-sul	BB; V; A	LC	X	X	
Donacospiza albifrons (Vieillot, 1817)	tico-tico-do-banhado	BB	LC			
Cardinalidae Ridgway, 1901						
Habia rubica (Vieillot, 1817)	tiê-de-bando	BB; V; A	LC	X		
Amaurospiza moesta	negrinho-do-mato	BB; V; A	LC	X	X	
Cyanoloxia glaucocaerulea	azulinho	BB; V; A	LC	X		X
Cyanoloxia brissonii	azulão	BB; V; A	LC		X	
Piranga flava	sanhaçu-de-fogo	BB; V; A	LC		X	
Fringillidae Leach, 1820						
Spinus magellanicus (Vieillot, 1805)	pintassilgo	BB; V; A	LC	X	X	X
Euphonia violacea (Linnaeus, 1758)	gaturamo	BB; V; A	LC		X	X
Euphonia chalybea (Mikan, 1825)	cais-cais	BB; V; A	NT (IUCN)	X	X	
Euphonia cyanocephala (Vieillot, 1818)	gaturamo-rei	BB	LC			
Euphonia chlorotica	fim-fim	BB; V; A	LC	X	X	
Euphonia pectoralis (Latham, 1801)	ferro-velho	BB	LC			
Chlorophonia cyanea	gaturamo-bandeira	BB; V; A	LC		X	
Estrildidae Bonaparte, 1850						
Estrilda astrild (Linnaeus, 1758)	bico-de-lacre	BB; V; A	LC		X	
Passeridae Rafinesque, 1815						
Passer domesticus (Linnaeus, 1758)	pardal	BB; V; A	LC		Х	

A seguir, estão apresentadas algumas espécies de aves que foram registradas durante o monitoramento qualiquantitativo durante as três campanhas (julho de 2019, fevereiro de 2020 e agosto de 2020) realizadas nas áreas de influência da PCH Salto Mauá (Figura 7).

Figura 7. Aves registradas durante o Programa de Monitoramento da Avifauna na Pequena Central Hidrelétrica (PCH) Salto Mauá Klabin Celulose S.A. A) *Cyanoloxia glaucocaerulea* (azulinho); B) *Saltator similis* (trinca-ferro); C) *Pipraidea melanonota* (saíra-viúva); D) *Nyctidromus albicollis* (bacurau); E) *Hirundinea ferruginea* (gibão-de-couro); F) *Psittacara leucophtalmus* (periquitão-maracanã); G) *Sporophila lineola* (bigodinho); H) *Cyanocorax chrysops* (gralha-picaça); I) *Penelope obscura* (jacuaçu); J) *Machetornis rixosa* (suiriri-cavaleiro); K) *Colaptes campestris* (pica-pau-docampo); L) *Colonia colonus* (viuvinha).

Em relação a constância das espécies registradas, ainda não é possível aplicar a estatística necessária devido ao esforço amostral não ser suficiente para aferir significativamente (mínimo cinco campanhas) (DAJOZ, 1983). É necessário um maior número de campanhas para determinar a constância de todas as espécies presentes no monitoramento.

Espécies endêmicas

Em relação as espécies endêmicas, prováveis ocorrentes na região e levantadas a partir de dados secundários, foram listadas 24. Dentre essas 24 espécies endêmicas de provável ocorrência, quatro foram registradas (17%) durante as campanhas de monitoramento do presente programa, sendo estas: *Brotogeris tirica, Todirostrum poliocephalum, Attila rufus* e *Tangara cyanocephala* (Figura 8). Esta classificação seguiu a lista dos táxons endêmicos do Brasil (PIACENTINI *et al.*, 2015) levantados. Essa lista, assim como os dados primários obtidos neste programa (espécies endêmicas registradas nas áreas de monitoramento da PCH Salto Mauá) estão apresentados na Tabela 3. Ainda cabe mencionar que das 24 espécies endêmicas prováveis ocorrentes, sete também estão incluídas nas listas de espécies ameaçadas.

Figura 8. Espécies endêmicas registradas durante as campanhas de monitoramento da avifauna nas áreas de monitoramento da PCH Salto Mauá. A) *Todirostrum poliocephalum*, B) *Attila rufus*, C) *Brotogeris tirica*, D) *Tangara cyanocephala*.

Tabela 3. Espécies da avifauna endêmicas de provável ocorrência para a área de estudo e registradas durante as três campanhas de monitoramento da avifauna na PCH Salto Mauá (julho/2019, fevereiro/2020 e agosto/2020).

Táxon	Status de Conservação	Registro	Status	Acquaplan PCH Salto Mauá – 2019/2020
Aratinga auricapillus (Kuhl, 1820)	LC	ВВ	R,E	
Brotogeris tirica (Gmelin, 1788)	LC	BB; A;V	R,E	X
Phaethornis squalidus (Temminck, 1822)	LC	ВВ	R,E	
Lophornis magnificus (Vieillot, 1817)	NT/PR	ВВ	R,E	
Malacoptila striata (Spix, 1824)	LC	ВВ	R,E	
Drymophila ferruginea (Temminck, 1822)	LC	ВВ	R,E	
<i>Drymophila ochropyga</i> (Hellmayr, 1906)	LC	ВВ	R,E	
Eleoscytalopus indigoticus (Wied, 1831)	LC	ВВ	R,E	
Scytalopus speluncae (Ménétriès, 1835)	LC	ВВ	R,E	
Chamaeza meruloides Vigors, 1825	NT/PR	ВВ	R,E	

Táxon	Status de Conservação	Registro	Status	Acquaplan PCH Salto Mauá – 2019/2020
Leptasthenura striolata (Pelzeln, 1856)	NT/PR	BB	R,E	
Onychorhynchus swainsoni (Pelzeln, 1858)	NT/PR; VU/MMA	ВВ	R,E	
Phylloscartes oustaleti (Sclater, 1887)	LC	ВВ	R,E	
Todirostrum poliocephalum (Wied, 1831)	LC	BB; A-V	R,E	x
Hemitriccus nidipendulus (Wied, 1831)	LC	ВВ	R,E	
Phyllomyias griseocapilla Sclater, 1862	NT/PR	BB	R,E	
Attila rufus (Vieillot, 1819)	LC	BB; A	R,E	X
Knipolegus nigerrimus (Vieillot, 1818)	LC	ВВ	R,E	
Orchesticus abeillei (Lesson, 1839)	NT/PR	ВВ	R,E	
Orthogonys chloricterus (Vieillot, 1819)	LC	ВВ	R,E	
Tangara cyanocephala (Statius Muller, 1776)	LC	ВВ	R,E	X
Tangara peruviana (Desmarest, 1806)	LC	ВВ	R,E	
Dacnis nigripes Pelzeln, 1856	NT/PR	BB	R,E	
Hemithraupis ruficapilla (Vieillot, 1818)	LC	ВВ	R,E	

A seguir está uma breve descrição das espécies endêmicas encontradas nas três campanhas de monitoramento da Pequena Central Hidrelétrica (PCH) Salto Mauá da Klabin Celulose S.A:

- *Brotogeris tirica* (Gmelin, 1788): Ave da família Psittacidae, conhecida popularmente como periquito-rico. Habita áreas florestais e áreas abertas, sendo uma espécie também encontrada em áreas urbanizadas com alguma arborização. São frequentemente observadas em comportamento de forrageio ou sobrevoando em bandos de cinco a dez indivíduos. É uma ave típica do bioma Mata Atlântica, sendo encontrada exclusivamente nesse tipo de formação. Embora esteja enquadrada na categoria "Pouco preocupante" (LC *Least Concern*), vêm sofrendo com os distúrbios antropogênicos e fragmentação nesse bioma, assim como o tráfico e comércio ilegal que é fortemente agravado nas aves da família Psittacidae.
- Todirostrum poliocephalum (Wied, 1831): Espécie conhecida vulgarmente como tequeteque, esta ave da família Rhychocyclidae habita as áreas florestais, principalmente nas bordas florestais a procura de insetos e frutas para sua alimentação. Por viver nesse écotono (área de justaposição entre habitats, ex: área aberta e área florestal), tal espécie possui baixa sensibilidade ambiental, sendo encontrada frequentemente em áreas de

matas secundárias ou em alto grau de regeneração, sendo por vezes avistada em áreas abertas quando migram entre áreas a procura de alimento. Essa espécie está na categoria "Pouco preocupante" (LC – *Least Concern*) de acordo com a IUCN (*International Union for Conservation of Nature*), sendo endêmica do bioma Mata Atlântica.

- Attila rufus (Vieillot, 1819): Esta ave da família Tyrannidae, conhecida popularmente como capitão-de-saíra, é uma espécie encontrada exclusivamente no bioma Mata Atlântica, principalmente no estrato médio florestal em bordas ou no seu interior. Assim como os demais tiranídeos é um ávido insetívoro, uma vez que tal bioma caracterizado por florestas úmidas beneficia a proliferação de insetos. Está na categoria "Pouco preocupante" (LC Least Concern), todavia, a descaracterização desta formação vegetal ameaça a sua ocorrência, possuindo uma sensibilidade moderada à fragmentação florestal. Necessita, portanto, de uma área mínima de floresta para sua sobrevivência (SICK, 1997).
- Tangara cyanocephala (Statius Muller, 1776): Conhecida popularmente como saíramilitar, esta ave da família Thraupidade é endêmica do bioma Mata Atlântica, ocorrendo principalmente no Sudeste e Sul do Brasil, com algumas populações isoladas no Nordeste Brasileiro (CLEMENTS, 2014). Possui hábitos frugívoros, sendo frequentemente avistada em bordas florestais e pomares em áreas urbanizadas. É uma ave que possui baixa sensibilidade ambiental, com pouca exigência em relação ao habitat, sendo enquadrada na categoria "Pouco preocupante" (LC Least Concern) de acordo com a IUCN (2020).

8.2. Análises quantitativas

Nas amostragens quantitativas, ou seja, a partir da realização dos pontos de contagem em raio fixo, foram registrados 1.834 indivíduos distribuídos em 93 espécies, nas três campanhas semestrais realizadas de julho de 2019 a agosto de 2020. As espécies mais abundantes na área de estudo foram: *Pygochelidon cyanoleuca*, *Pyrrhura frontalis*, *Pitangus sulphuratus*, *Coragyps atratus*, *Basileuterus culicivorus*, *Columbina talpacoti* e *Tachycineta leucorrhoa*, respectivamente, (Tabela 4).

Tabela 4. Número de indivíduos de cada espécie registrada nas três campanhas amostrais (julho/2019, fevereiro/2020 e agosto/2020) do Programa de Monitoramento da Avifauna na Pequena Central Hidrelétrica (PCH) Salto Mauá da Klabin Celulose S.A..

Táxon	Número de indivíduos
Pygochelidon cyanoleuca (Vieillot, 1817)	208
Pyrrhura frontalis (Vieillot, 1817)	119
Pitangus sulphuratus (Linnaeus, 1766)	92

Táxon	Número de indivíduos
Coragyps atratus (Bechstein, 1793)	70
Basileuterus culicivorus (Deppe, 1830)	69
Columbina talpacoti (Temminck, 1810)	61
Tachycineta leucorrhoa (Vieillot, 1817)	60
Sicalis flaveola (Linnaeus, 1766)	56
Psittacara leucophthalmus	55
Vanellus chilensis (Molina, 1782)	53
Furnarius rufus (Gmelin, 1788)	49
Tyrannus melancholicus Vieillot, 1819	37
Nannopterum brasilianus (Gmelin, 1789)	36
Stelgidopteryx ruficollis (Vieillot, 1817)	35
Turdus leucomelas Vieillot, 1818	33
Troglodytes musculus Naumann, 1823	32
Brotogeris tirica (Gmelin, 1788)	29
Patagioenas picazuro (Temminck, 1813)	28
Crotophaga ani Linnaeus, 1758	27
Picumnus temminckii Lafresnaye, 1845	27
Todirostrum poliocephalum (Wied, 1831)	27
Veniliornis spilogaster (Wagler, 1827)	25
Schiffornis virescens (Lafresnaye, 1838)	25
Turdus rufiventris Vieillot, 1818	25
Zonotrichia capensis (Statius Muller, 1776)	25
Cathartes aura (Linnaeus, 1758)	23
Colonia colonus (Vieillot, 1818)	23
Empidonomus varius	21
Setophaga pitiayumi (Vieillot, 1817)	21
Saltator similis d'Orbigny & Lafresnaye, 1837	21
Megarhynchus pitanguá	18
Guira guira (Gmelin, 1788)	17
Sirystes sibilator (Vieillot, 1818)	17
Aramides saracura (Spix, 1825)	16
Thalurania glaucopis (Gmelin, 1788)	15
Spinus magellanicus (Vieillot, 1805)	15
Milvago chimachima (Vieillot, 1816)	14
Synallaxis spixi Sclater, 1856	14
Zenaida auriculata (Des Murs, 1847)	12
Athene cunicularia (Molina, 1782)	12
Thamnophilus caerulescens Vieillot, 1816	11
Cichlocolaptes leucophrus (Jardine & Selby, 1830)	11
Chiroxiphia caudata (Shaw & Nodder, 1793)	11
Tyrannus savana Daudin, 1802	11
Ramphastos dicolorus Linnaeus, 1766	10
Forpus xanthopterygius	10
Euphonia violacea (Linnaeus, 1758)	10
Trogon surrucura Vieillot, 1817	9

Táxon	Número de indivíduos
Serpophaga subcristata (Vieillot, 1817)	9
Trichothraupis melanops (Vieillot, 1818)	9
Columbina squamata	8
Megaceryle torquata (Linnaeus, 1766)	8
Colaptes campetris (Vieillot, 1818)	7
Pyriglena leucoptera (Vieillot, 1818)	7
Tachycineta albiventer	7
Leptotila verreauxi	6
Nyctidromus albicollis (Gmelin, 1789)	6
Eupetomena macroura (Gmelin, 1788)	6
Elaenia parvirostris Pelzeln, 1868	6
Hirundinea ferruginea	6
Myiozetetes similis	6
Penelope obscura	5
Ardea alba Linnaeus, 1758	5
Larus dominicanus	5
Machetornis rixosa	5
Turdus amaurochalinus	5
Tangara sayaca	5
Sporophila caerulescens	5
Egretta caerulea	4
Egretta thula	4
Rupornis magnirostris (Gmelin, 1788)	4
Campephilus robustus (Lichtenstein, 1818)	4
Caracara plancus (Miller, 1777)	4
Cyclarhis gujanensis	4
Ardea cocoi Linnaeus, 1766	3
Patagioenas plumbea	3
Florisuga fusca	3
Camptostoma obsoletum (Temminck, 1824)	3
Coereba flaveola (Linnaeus, 1758)	3
Nycticorax nycticorax	2
Piaya cayana	2
Trogon viridis	2
Pachyramphus castaneus (Jardine & Selby, 1827)	2
Pipraeidea melanonota (Vieillot, 1819)	2
Sporophila lineola	2
Thamnophilus ruficapillus Vieillot, 1816	1
Heliobletus contaminatus	1
Attila rufus (Vieillot, 1819)	1
Cyanoloxia glaucocaerulea	1
Patagioenas cayennensis	2
Cacicus haemorrhous	6

A maior abundância de espécies como *Pygochelidon cyanoleuca* e *Pyrrhura frontalis* devese ao fato que estas aves possuem hábitos gregários, vivendo em pares ou bando e sendo facilmente registradas pelos métodos visual e/ou auditivo, o que facilita a contagem destes indivíduos no ambiente (SICK, 1997). A abundância de *Pygochelidon cyanoleuca* também está associada a presença de corpos d'água nas imediações da Pequena Central Hidrelétrica (PCH) Salto Mauá e cupinzeiros que foram observados em campo, onde tais aves sobrevoam estas áreas em busca de insetos alados, uma vez que esta espécie possui hábitos alimentares insetívoros (SANTIAGO, 2007). Já *Pyrrhura frontalis* e os demais psitacídeos são facilmente registrados por sobrevoarem a área em bandos e vocalizarem de forma alta e constante, sendo mais facilmente detectadas no ambiente (QUINN *et al.*, 2011).

Pitangus sulphuratus, Coragyps atratus e Basileuterus culicivorus são espécies que não possuem alta sensibilidade ambiental, sendo encontradas em áreas abertas e ambientes urbanos, sendo mais facilmente observadas que espécies de interior de floresta ou que possuem alta sensibilidade a distúrbios ambientais (MANHÃES & LOURES-RIBEIRO, 2011). Pitangus sulphuratus esteve presente em todos os pontos de monitoramento, sendo uma espécie conspícua e que habita uma vasta gama de ambientes, desde manguezais até áreas florestais, sendo um dos tiranídeos mais presentes em áreas abertas, além de ser tolerante a áreas que possuem distúrbios antrópicos (ARGEL-DE-OLIVEIRA, 1998).

Através dos Pontos de Contagem em Raio Fixo foi calculado o Índice Pontual de Abundância (IPA) e a Frequência Relativa (FR) de cada espécie registrada durante o monitoramento. O Índice Pontual de Abundância (IPA) variou de 0,125 (1 contato) a 5,25 (42 contatos) com uma média de 0,8023 (equivalente a 6 contatos/espécie) (Figura 9).

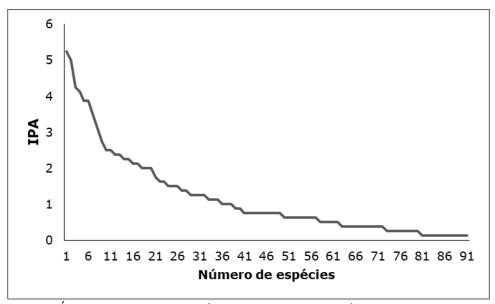


Figura 9. Índice Pontual de Abundância (IPA) de cada espécie registrada durante as três campanhas (julho de 2019, fevereiro de 2020 e agosto de 2020) de monitoramento da avifauna na PCH Salto Mauá.

As espécies que apresentaram o maior valor de IPA foram *Pitangus sulphuratus*, *Basileuterus culicivorus*, *Pygochelidon cyanoleuca*, *Sicalis flaveola*, *Columbina talpacoti* e *Tyrannus melancholicus*, respectivamente (Figura 10). Essas espécies são as mais comuns e mais abundantes na área de estudo e tal resultado deve-se ao fato de que estas aves habitam áreas abertas e/ou bordas de floresta e vocalizam o ano todo, com exceção de *T. melancholicus*. De acordo com Daros *et al.* (2018), o período de maior vocalização do tiranídeo *T. melancholicus* é no período de inverno. No entanto, tal espécie esteve presente em todas as campanhas, indicando que já pode estar habituado a região de estudo, uma vez que tal tiranídeo é adaptado a uma ampla variedade de ambientes e nichos ecológicos, além de apresentar grande riqueza de repertórios comportamentais, favorecendo a sua subsistência no local (FITZPATRICK, 1981).

As espécies que obtiveram as menores somas de IPA foram *Nycticorax nycticorax*, *Patagioenas cayennensis*, *Thamnophilus ruficapillus*, *Egretta caerulea*, *Columbina squammata*, *Cyanoloxia glaucocaerulea* e *Pipraeidea melanonota*, respectivamente. Tais espécies foram avistadas apenas uma vez na metodologia de Contagem por Raio Fixo e quase todas apresentam hábitos de interior de floresta ou que vocalizam pouco. Isto é, essas espécies apresentam hábitos incospícuos, não sendo detectadas facilmente pelo observador, sendo necessário um maior número de campanhas para detecção desses táxons no ambiente.

Na área de estudo, pode-se notar a presença ocasional de *Egretta caerulea* e *Nycticorax* nycticorax, sendo registradas apenas uma vez. Embora tais aves em estudos de avifauna

sejam abundantes, por possuírem hábitos gregários, pode-se aferir que a área monitorada da PCH Salto Mauá não seja propícia para a ocorrência dessas espécies e embora tais aves estejam associadas a corpos de água, são normalmente encontradas associadas à ambientes costeiros e/ou manguezais, onde encontram área de forrageio e nidificação (CLEMENTS, 2005).

As espécies mais frequentes durante as campanhas deste monitoramento foram *P. cyanoleuca* (n= 208), *P. frontalis* (n= 119), *P. sulphuratus* (n=92), *C. atratus* (n= 70) e *Basileuterus culicivorus* (n= 46) (Figura 11). Conforme supracitado, tais espécies possuem hábito gregário e/ou possuem hábitos conspícuos, isto é, são facilmente detectadas no ambiente. Vale ressaltar que a presença de psitacídeos na área de monitoramento é de suma importância, uma vez que tal família sofre constante pressão antropogênica por conta do tráfico e comércio ilegal, sendo avistadas em campos em buracos de rochas e estruturas artificiais, onde possivelmente sejam áreas de nidificação (WRIGHT *et al.*, 2001).

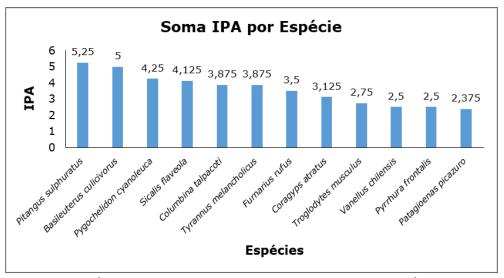


Figura 10. Espécies com maiores valores de IPA registradas nas três campanhas semestrais (julho de 2019 a agosto de 2020) do Monitoramento da Avifauna na Pequena Central Hidrelétrica (PCH) Salto Mauá da Klabin Celulose S.A., em ordem decrescente.

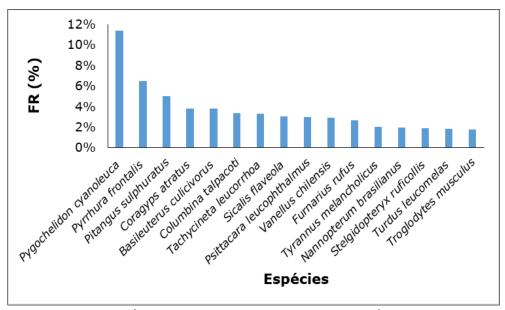


Figura 11. FR (Frequência Relativa) em porcentagem das espécies registradas nas três campanhas semestrais (julho de 2019 a agosto de 2020) do Monitoramento da Avifauna na Pequena Central Hidrelétrica (PCH) Salto Mauá da Klabin Celulose S.A., em ordem decrescente.

A riqueza e abundância específica foram semelhantes em ambas as estações climáticas, quando comparadas, no entanto, no período de inverno houve uma maior diversidade e abundância, assim como pelo fato de serem realizadas mais campanhas no período de inverno até o momento. Um dos fatores que pode influenciar a composição das espécies é a precipitação que ocorre no período de verão (Tabela 5), fator que foi observado nos períodos de amostragem de avifauna no mês de fevereiro de 2020, onde tiveram longos períodos de chuva durante o monitoramento, interferindo na detecção de algumas espécies de aves.

Tabela 5. Dados Climatológicos referente as campanhas amostrais realizadas nos anos de 2019 e 2020 para o município de Telêmaco Borba, PR.

Dados Climatológicos	Campanha 1	Campanha 2	Campanha 3
Dados Climatológicos	JUL.19	FEV.20	AGO.20
Temperatura média (°C)	14	22	15.1
Temperatura mínima (°C)	7	16.2	3
Temperatura máxima (°C)	21.1	27.9	31
Precipitação média (mm)	75	145	73

A fim de analisar a diversidade das espécies registradas durante as campanhas de julho/2019 e agosto/2020 (inverno) e fevereiro/2020 (verão), e comparar as estações climáticas, foi gerada uma tabela com os índices de diversidade da avifauna registrada no monitoramento em questão (Tabela 6).

O índice de Simpson se mostrou alto durante todas as campanhas amostrais, considerando que valores próximos a 1 são valores atribuídos a uma maior diversidade específica e uma menor dominância específica (valores de dominância se mostraram baixos em ambas as campanhas), o que pode ser visualizado na Tabela 6. Tais valores indicam que poucas espécies apresentaram uma abundância alta e que há uma maior heterogeneidade no ambiente amostrado.

Tabela 6. Índices de Diversidade calculados com o auxílio do software PAST para as três campanhas amostrais (julho/2019, fevereiro/2020 e agosto/2020) onde o método quantitativo foi aplicado

aplicado.			
Índices de			
Diversidade	JUL.2019	FEV.2020	AGO.2020
Táxons	62	60	63
Indivíduos	580	555	691
Dominância	0,037	0,041	0,0393
Índice de Simpson	0,963	0,959	0,961
Índice de Shannon	3,672	3,609	3,685
Equitatividade	0,635	0,616	0,633
Índice de Brillouin	3,484	3,42	3,517
Índice de Menhick	2,574	2,547	2,397
Índice de Margalef	9,587	9,337	9,483
Equitabilidade	0,890	0,882	0,890
Índice de Fisher- alpha	17,58	17,09	16,86
Índice de Berger- Parker	0,098	0,121	0,122
Chao-1	64,14	60,1	78

O perfil de Diversidade de Rényi permite a comparação da diversidade em cada uma das campanhas, visto que alguns índices são mais sensíveis às espécies raras e outros a dominância específica. Durante as três campanhas amostrais, pode-se notar que as curvas se sobrepõem ao longo do Perfil de Diversidade (Figura 12), o que significa que a diversidade não variou de forma significativa durantes as campanhas, sendo corroborado pelos índices de diversidade acima apresentados, onde os valores de riqueza e abundância foram semelhantes.

Foi utilizado também o teste de Kruskal-Wallis para avaliar a significância estatística dos valores do índice de Rényi. O teste de Kruskal-Wallis indicou que não houve diferença significativa entre as campanhas, o que mostra uma uniformidade em relação a diversidade específica.

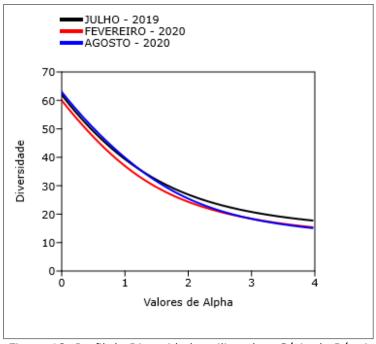


Figura 12. Perfil de Diversidade utilizando a Série de Rényi durante as três campanhas amostrais (julho/2019, fevereiro/2020 e agosto/2020) do Programa de Monitoramento da Avifauna na Pequena Central Hidrelétrica Salto Mauá.

Com o objetivo de verificar a suficiência do esforço amostral até a terceira campanha realizada, foi gerado no programa R versão 3.1.2, a Curva de Rarefação (Figura 13), a qual mostra o acúmulo de espécies registradas.

Para verificar se a curva de rarefação está próxima a estabilização, foi utilizada a função "specpool" dentro do programa R. Esta função tem por finalidade estimar a riqueza de espécies em um "pool" de espécies (todas as espécies disponíveis que podem ocupar determinada área) ou o número de espécies não-observadas através dos estimadores Chao, Jackknife e Bootstrap. Esta função se baseia em incidências locais de amostra e fornece uma estimativa para a suficiência amostral.

Pode-se observar que a curva de rarefação, embora esteja próxima a estabilização, ainda apresenta um resultado ascendente, ou seja, necessitam novos registros para se chegar à assíntota. Segundo Gotelli & Colwell (2001) quando não há estabilização, ou seja, quando esta atinge um ponto em que o esforço de coleta não resulta no aumento de espécies, significa que praticamente toda riqueza da área foi amostrada. Ao comparar com os trabalhos pretéritos realizados por Acquaplan em áreas adjacentes à área de estudo, é possível confirmar a necessidade de um maior esforço para se estimar a composição específica das espécies na área de estudo com precisão.

A riqueza estimada por Chao, Jackknife e Bootstrap indicam que a riqueza observada corresponde entre 80 a 90% da riqueza estimada para determinada área. Estes estimadores confirmam que com a adição de novas espécies a curva pode chegar à estabilização, sendo necessário um maior esforço para a curva chegar à assíntota.

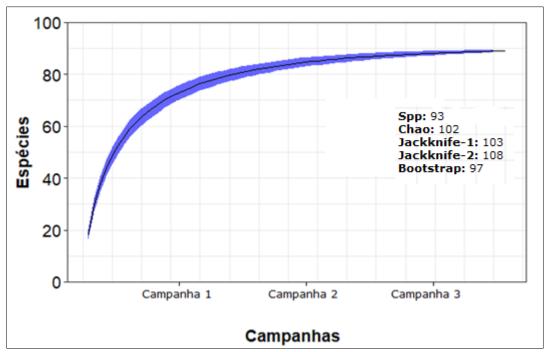


Figura 13. Curva de rarefação realizada pelo software R Statistics.

9. CONSIDERAÇÕES FINAIS

O Monitoramento da Avifauna da Pequena Central Hidrelétrica Salto Mauá revelou que a riqueza e composição de espécies dentro da área de estudo representa um total de 21% do total de espécies levantadas para a região. Ao todo, foram registradas um total de 93 espécies, onde nenhuma das espécies se encontra em algum grau de ameaça. A ausência de espécies ameaçadas não significa que a área não tenha subsídios para ocorrências das espécies em algum grau de ameaça, até mesmo porque espécies como *Crypturellus tautapa*, *Crypturellus parvirostris* e *Celeus galeatus* foram registradas em áreas adjacentes a área de estudo em monitoramentos pretéritos. Portanto, é necessário continuar o acompanhamento das populações de avifauna na área de estudo.

Ao observar a ecologia das espécies em relação ao habitat, pode-se notar a presença de espécies insetívoras de sub-bosque e de espécies frugívoras registradas durante as campanhas de monitoramento, sendo representadas principalmente pelas famílias Hirundinidae, Tyrannidae, Thraupidae e Psittacidae. A ocorrência de espécies como a

Camptostoma obsoletum, Penelope obscura, Thamnophilus ruficapillus, Pipraeidea melanonota e Cyanocorax chrysops indicam um ambiente complexo, que mantém a fitofisionomia e/ou que que possui recursos suficientes para tais espécies existirem, uma vez que tais espécies são de média a grande sensibilidade ambiental.

Dentro da área de estudo pode-se observar a presença de ambientes de áreas abertas e fragmentos secundários de floresta, assim como ambientes aquáticos nas áreas adjacentes, o que possibilita a ocorrência de diferentes tipos de aves, de acordo com seu hábito. Segundo Gimenes e Anjos (2003), os principais fatores que influenciam a riqueza e composição de espécies está relacionado a diversidade de habitats, heterogeneidade da vegetação e uma vasta gama de ambientes dentro de determinado local possibilita maior biodiversidade.

Foi observado também efeitos de fragmentação e ausência de áreas com vegetação primária, não sendo observadas táxons mais sensíveis ambientalmente como da família Tinamidae até o momento. Estudos focados sobre o impacto das Pequenas Centrais Hidrelétricas sobre avifauna demonstram que o impacto advindo das obras geralmente está associado a perda de cobertura vegetal nativa, fragmentação e dispersão da fauna nativa (TRAVASSOS, 2001; SANCHES, 2008; NILTON, 2009). No entanto, ainda se considera prematuro determinar os distúrbios na estrutura da avifauna advindo da PCH – Salto Mauá, sendo necessário um maior acompanhamento para determinação do impacto sobre as aves da região.

A ocorrência de espécies endêmicas como *Attila rufus*, *Todirostrum poliocephalum*, *Brotogeris tirica* e *Tangara cyanocephala* na região monitorada, também demonstra a importância das áreas adjacentes a PCH Salto Mauá para ocorrência de táxons que vivem exclusivamente em determinadas ecorregiões. Tendo em vista os aspectos apresentados, entende-se como necessária a continuidade no acompanhamento das populações de aves na Pequena Central Hidrelétrica (PCH) Salto Mauá da Klabin para entender o grau de conservação dos ambientes e para compreender a dinâmica das populações nos fragmentos florestais locais e, se necessário, propor estratégias conservacionistas.

10. REFERÊNCIAS BIBLIOGRÁFICAS

ALEIXO, A. 1999. Effects of selective logging on a bird community in the Brazilian Atlantic Forest. The Condor, Camarillo, 101: 537-548.

ARGEL-DE-OLIVEIRA, M. M. Aves que plantam: frugivoria e dispersão de sementes por aves. Boletim CEO, São Paulo, n. 13, p. 9-21, jul. 1998.

BIRDLIFE INTERNATIONAL 2017. World Database of Key Biodiversity Areas. Developed by the KBA Partnership: BirdLife International, International Union for the Conservation of Nature, Amphibian Survival Alliance, Conservation International, Critical Ecosystem Partnership Fund, Global Environment Facility, Global Wildlife Conservation, NatureServe, Rainforest Trust, Royal Society for the Protection of Birds, Wildlife Conservation Society and World Wildlife Fund.

BROWER, J.E. & ZAR, J.H. 1984. Field & laboratory methods for general ecology. W.C. Brown Publishers, Boston.

CARRANO, E. 2006. Composição e Conservação da Avifauna na Floresta Estadual do Palmito, município de Paranaguá, Paraná. Dissertação de Mestrado em Ciências Florestais, Curitiba; UFPR. 125 p.

CENTRO DE PREVISÃO DE TEMPO E ESTUDOS CLIMÁTICOS. INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS. 2020. Dados climatológicos do município de Telêmaco Borba, PR. https://www.cptec.inpe.br/previsao-tempo/pr/telemaco-borba. Acesso em: 30 de agosto de 2020.

CLEMENTS, J. F. 2005 The Clements Checklist of Birds of the World. Cornell: Cornell University Press. http://www.birds.cornell.edu/clementschecklist/ acesso em: 30 de agosto de 2020.

CLEMENTS, J. F., T. S. SCHULENBERG, M. J. ILIFF, S. M. BILLERMAN, T. A. FREDERICKS, B. L. SULLIVAN, AND C. L. WOOD. 2014. The eBird/Clements Checklist of Birds of the World: v2014.

DAJOZ, R. 1983. Ecologia geral. 4a. ed. Petrópolis, Vozes. 472p.

DAROS, Hermes; DUTRA, William Barbosa and DUCA, Charles. 2018. Breeding biology of *Tyrannus melancholicus* (Aves: Tyrannidae) in a restinga reserve of southeastern Brazil. Zoologia (Curitiba) [online], vol.35

FITZPATRICK, J.W. 1981. Search strategies of tyrant flycatchers. Animal Behavior, London, 29 (3): 810-821.

GIMENES, M. R.; ANJOS, L. 2003. Efeitos da fragmentação florestal sobre a comunidade de aves. Acta Scientiarum. Biological Scienses, 25(2): 391-402.

GONZAGA, L. P. & CASTIGLIONI, G. 2001. Aves das montanhas do sudeste do Brasil. CD de Áudio. Rio de Janeiro, Arquivo Sonoro Prof. Elias Coelho, UFRJ (ASECCD01).

GOTELLI, N.J. AND COLWELL, R.K. (2001) Quantifying Biodiversity: Procedures and Pitfalls in the Measurement and Comparison of Species Richness. Ecology Letters, 4, 379-391. http://dx.doi.org/10.1046/j.1461-0248.2001.00230.x

HAMMER, O.; D.A.T. HARPER & P.D. RYAN. 2001. PAST: Paleontological Statistic software package for education and data analysis. Paleontologia Eletronica 4 (1): 1-9.

HILL, M.O. 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 54(2):427-432.

ISLER, P.R. & WHITNEY, B.M. (2002) Songs of the Antbirds: Thamnophilidae, Formicariidae, and Conopophagidae. Cornell Laboratory of Ornithology, Ithaca.

IUCN. 2018. The IUCN Redlist of Threatened Species. Cambridge/UK, The IUCN Species Survival Comission. URL: http://www.redlist.org (acessado em 30 de agosto de 2020).

KREBS, C. J. (1989). Ecological methodology. New York, NY: Harper and Row Publishers Inc., 654 p.

LIU, C., WHITTAKER, R.J., MA, K. & MALCOLM, J.R. 2007. Unifying and distinguishing diversity ordering methods for comparing communities. Pop. Ecol. 49(2):89-100.

LUDWIG, J.A. AND REYNOLDS, J.F. (1988) Statistical Ecology: A Primer on Methods and Computing. Wiley-Interscience Pub., New York.

MAGURRAN, A.E. 1988. Ecological Diversity and its measurement. Princeton, Newjersey, VI+I79p

MANHÃES, M.A. & LOURES-RIBEIRO, A. The avifauna of the Poço D'Anta Municipal Biological Reserve, Juiz de Fora, MG. Biota Neotrop. 11(3): http://www.biotaneotropica.org.br/v11n3/en/abstract?inventory+ bn01411032011

MARINI, M. A. e GARCIA, F. I. 2005. Conservação de Aves no Brasil. Megadiversidade, v.1, n.1, Julho/ p. 95 – 102.

MELO, A.S. 2008. O que ganhamos 'confundindo' riqueza de espécies e equabilidade num índice de diversidade? Biota Neotropica 8:21-27.

MIKICH, S.B.; BÉRNILS, R.S. & PIZZI, P.A. 2004. Fauna ameaçada no Paraná: uma síntese. In: S.B.Mikich & R.S.Bérnils eds. Livro vermelho da fauna ameaçada no Estado do Paraná. Curitiba, Instituto Ambiental do Paraná. p. 743-754.

NILTON, C. 2009. O Impacto das Pequenas Centrais Hidrelétricas - PCH's no Meio Ambiente. 2009. 10 f. TCC (Graduação em Formas Alternativas de Energia) - Universidade Federal de Lavras, Lavras.

PERLO, VAN B. (2009). A Field guide to the birds of Brazil. New York: Oxford University Press.

PIACENTINI, V.Q., A. ALEIXO, C.E. AGNE, G.N. MAURICIO, J.F. PACHECO, G.A. BRAVO, G.R.R. BRITO, L.N. NAKA, F. OLMOS, S. POSSO, L.F. SILVEIRA, G.S. BETINI, E. CARRANO, I. FRANZ, A.C. LEES, L.M. LIMA, D. PIOLI, F. SCHUNCK, F.R. AMARAL, G.A. BENCKE, M. COHN-HAFT, L.F.A. FIGUEIREDO, F.C. STRAUBE & E. CESARI. (2015). Annotated checklist of the birds of Brazil by the Brazilian Ornithological Records Committee / Lista comentada das aves do Brasil pelo Comitê Brasileiro de Registros Ornitológicos. Revista Brasileira de Ornitologia 23(2): 91-298.

QUINN, J.E., BRANDLE, J.R., JOHNSON, R.J., TYRE, A.J. 2011. Application of detectability in use of indicator species: a case study with birds. Ecological Indicators 11:1413–1418.

REMSEN, J. V. JR.; ARETA J. I.; CADENA, C. D.; JARAMILLO, A.; NORES, M; PACHECO, J. F.; PÉREZ-EMÁN, J.; ROBBINS, M. B.; STILES, F. G.; STOTZ, D. F. & ZIMMER K. J. Version 30 July 2015. A classification of the bird species of South America. American Ornithologists' Union. http://www.museum.lsu.edu/~Remsen/SACCBaseline.html

REYNOLDS, R. T., J. M. SCOTT, and R. A. NUSSBAUM. 1980. A variable circular-plot method for estimating bird numbers. Condor 82:309-313.

RIDGELY, R. S. & TUDOR, G. 2009. Field guide to the songbirds of South America: the passerines. Austin, University of Texas Press. 736p.

SÁNCHES, L. Avaliação de impacto ambiental: conceitos e métodos. São Paulo: Oficina de Textos, 2008.

SANTIAGO, R. G. 2007. Andorinha-de-casa-pequena (*Pygochelidon cyanoleuca*) Guia Interativo de Aves Urbanas. Disponível em: http://www.ib.unicamp.br/lte/giau/visualizarMaterial.php?idMaterial=428>. Acesso em: 30 de agosto de 2020

SCHERER-NETO, P., F.C. STRAUBE, E. CARRANO & A. URBEN-FILHO. (2011). Lista das aves do Paraná: edição comemorativa do Centenário da Ornitologia Paranaense. Curitiba: Hori Consultoria Ambiental. Hori Cadernos Técnicos nº 2.

SICK, H. 1997. Ornitologia Brasileira. 2ed. Rio de Janeiro, Nova Fronteira. 912p.

SILVEIRA NETO, S., O. NAKANO, D. BARBIN & N.A. VILLA NOVA. 1976. Manual de ecologia dos insetos. Piracicaba, Ed. Agronômica Ceres, 419p.

TÓTHMÉRÉSZ, B. 1995. Comparison of different methods for diversity ordering. J. Veg. Sci. 6(2):283-290.

TRAVASSOS, L. E. P. Impactos Gerados pela UHE Porto Primavera Sobre o Meio Físico e Biótico de Campinal, Presidente Epitácio, SP. Revista de Biologia e Ciências da Terra, v. 1, n. 1, 2001.

VOLPATO, G. L.; GIAQUINTO, P. C.; FERNANDES-DE-CASTILHO M.; BARRETO, R. E. & GONÇALVES-DE-FREITAS, E. (2009) Animal Welfare: from concepts to reality. Oecologia Brasiliensis, 13(1), 5-15.

WIKIAVES. 2020. Wikiaves - A Enciclopédia das Aves do Brasil. Espécies registradas no município de Telêmaco Borba. Disponível em: http://www.wikiaves.com/. Acesso em 30 de agosto de 2020.

WRIGHT, T. F., TOFT, C. A., ENKERLIN-HOEFLICH, E., GONZALEZ-ELIZONDO, J., ALBORNOZ, M., RODRIGUEZ-FERRARO, A., ROJAS-SUAREZ, F., SANZ, V., TRUJILLO, A., BEISSINGER, S. R., BEROVIDES, A. V., GALVEZ, X. A., BRICE, A. T., JOYNER, K., EBERHARD J. R., GILARDI, J., KOENIG S. E., STOLESON, S., MARTUSCELLI, P., MEYERS, J. M., RENTON, K., RODRIGUEZ, A. M., SOSAASANZA, A. C., VILELLA, FJ., & WILEY, J. W. 2001. Nest poaching in neotropical parrots. Conservation Biology, 15: 710-720.

WAYNE, D. 1990. Applied nonparametric statistics for the Behavioral Sciences. Second Edition (New York NY: McGraw Hill, 1988). 399 pp

WUNDERLE, J.M., JR. 1994. Métodos para contar aves terrestres del Caribe. General Technical Report SO–100. U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station, New Orleans, Louisiana.

XENO-CANTO. 2020. Xeno-canto America – Bird sounds from the Americas. Disponível em: http://www.xeno-canto.org/. Acesso em 20 de fevereiro de 2020.

Serviço Público Federal Conselho Federal de Biologia Conselho Regional de Biologia da 7º Região Avenida Marechal Floriano Peixoto, 170 - 13º andar Centro - Curitiba / Paraná - Brasil CEP: 80020-090 - Fone (41) 3079-0077 crbio07@crbio07.gov.br

ANOTAÇÃO DE RESPONSABILIDADE TÉCNICA ART N°:07-0341/20					
	CONTR	RATADO			
Nome:JOSIANE ROVEDDER		Registro CRBio:45049/RS	Registro CRBio:45049/RS		
CPF:80970885091	Tel:				
E-Mail:josiane@acquaplan.net					
Endereço:AV. RUI BARBOSA, 372 AP 03					
Cidade:BALNEÁRIO CAMBORIU		Bairro:PRAIA DOS AMORES			
CEP:88331-510		UF:SC			
	CONTR	ATANTE			
Nome:KLABIN					
Registro Profissional:		CPF/CGC/CNPJ:89.637.490/0133-95	CPF/CGC/CNPJ:89.637.490/0133-95		
Endereço:Fazenda Monte Alegre, S/N					
Cidade:TELEMACO BORBA		Bairro:HARMONIA			
CEP:84275-000		UF:PR			
Site:					
DADOS I	DA ATIVIDA	ADE PROFISSIONAL			
Natureza: Prestação de Serviços - 1.7					
Identificação:Programa de Monitoramento					
Município: Ortigueira	Muni	cípio da sede: Balneário Camboriú	UF:SC		
Forma de participação: Equipe	Perfil	da equipe: BIÓLOGOS			
Área do conhecimento: Ecologia	a do conhecimento: Ecologia Campo de atuação: Meio ambiente				
Descrição sumária da atividade:RESPONSÁVEL TÉCNICA PELA ICTIOFAUNA DA PCH PRESIDENTE VARGAS	EXECUÇÂ	ÃO DOS PROGRAMAS DE MONITORAMENTO D	A AVIFAUNA E		
Valor: R\$ 100,00	Total	de horas: 1.900			
Início: 01 / 02 / 2020	Térm	nino:			
ASSINAT	TIDAS		Dara verificar a		
Declaro serem verdadeira		nações acima	Para verificar a autenticidade desta		
Data: 0) 102 / 2020	3 45 11110111		ART acesse o		
Data. 1 2020		Data: / /	Online em nosso site e		
Assinatura do profissional		Assinatura e carimbo do contratante	depois o serviço		
Assiriatura do profissional		Assinatura e carmino do contratante	Conferência de ART Protocolo Nº28523		
Solicitação de baixa por distrato	Solicitação de baixa por concl		nclusão		
Data: / / Assinatura do Profissional					
		Declaramos a conclusão do trabalho anotado na presente			
		ART, razão pela qual solicitamos a devida BAIXA junto aos Data: / / Assinatura do Profissional			
Date 1					
Data: / / Assinatura e carimbo do contr	atante	Data: / / Assinatura e cari	mbo do contratante		